metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m817-m818

Bis(1,10-phenanthroline-κ2N,N′)(sulfato-κ2O,O′)cadmium(II) propane-1,3-diol solvate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong@tom.com

(Received 7 June 2010; accepted 11 June 2010; online 18 June 2010)

In the title compound, [Cd(SO4)(C12H8N2)2]·C3H8O2, the CdII atom has a distorted octa­hedral coordination composed of four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from an O,O′-bidentate sulfate group. The two chelating NCCN groups subtend a dihedral angle of 82.21 (9)°. The CdII ion, the S atom and the middle C atom of the propane-1,3-diol solvent mol­ecule are located on special positions, site symmetry 2. The solvate features a pair of O—H⋯O hydrogen bonds with the uncoordinated O atoms of the sulfate ion. The OH group of the propane-1,3-diol solvent is disordered over two positions of equal occupancy.

Related literature

For isostructural compounds, see: Cui et al. (2010[Cui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564.]); Ni et al. (2010[Ni, C., Zhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m746-m747.]); Zhong (2010a[Zhong, K.-L. (2010a). Acta Cryst. E66, m247.]). For the ethane-1,2-diol solvate of the title complex, see: Lu et al. (2006[Lu, W.-J., Zhong, K.-L. & Zhu, Y.-M. (2006). Acta Cryst. E62, m891-m893.]). For background to bidentate-chelating sulfate complexes, see: Zhong et al. (2006[Zhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631-m633.], 2010b[Zhong, K.-L. (2010b). Acta Cryst. E66, m131.]); Zhu et al. (2006[Zhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006). Acta Cryst. E62, m2725-m2726.]). For the preparation, see: Zhong et al. (2010a[Zhong, K.-L. (2010a). Acta Cryst. E66, m247.]). For background to coordination polymers, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Chem. Commun. pp. 1067-1068.]); Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Li et al. (2003[Li, Y. G., Hao, N., Lu, Y., Wang, E. B., Kang, Z. H. & Hu, C.W. (2003). Inorg. Chem. 42, 3119-3124.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(SO4)(C12H8N2)2]·C3H8O2

  • Mr = 644.98

  • Monoclinic, C 2/c

  • a = 17.854 (4) Å

  • b = 12.520 (3) Å

  • c = 13.519 (3) Å

  • β = 123.01 (3)°

  • V = 2534.1 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 223 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.691, Tmax = 0.826

  • 8349 measured reflections

  • 2880 independent reflections

  • 2683 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.10

  • 2880 reflections

  • 178 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N2 2.3255 (19)
Cd1—N1 2.3439 (19)
Cd1—O1 2.3608 (17)
S1—O2 1.4652 (16)
S1—O1 1.4873 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O2 0.82 2.05 2.806 (3) 153

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of new coordination polymers have attracted great attention in recent years, owing to their interesting structural topologies and potential application as functional materials (Batten & Robson,1998; Eddaoudi et al., 2001; Li et al., 2003). Four years ago, we attempted to synthesize mixed-ligand coordination polymers of transition metal with phen as second ligand via a ethanediol-solvothermal reaction, unexpectedly, we found the potentially interesting structure with bidentate-chelating sulfate ligand, e.g. [CdSO4(C12H8N2)2].C2H6O2, (II) (C12H8N2 is 1,10- phenanthroline; Lu et al., 2006), [CoSO4(C12H8N2)2].C2H6O2, (III) (Zhong et al.,, 2006), [ZnSO4(C12H8N2)2].C2H6O2, (IV) (Zhu et al., 2006). We report here the structure of [CdSO4(C12H8N2)2].C2H6O2, (I).

X-ray diffraction indicated that the title compound, (I) is isostructural to the recently reported cobalt(II), nickel(II) and zinc(II) structure with bidentate-chelating sulfate ligand (Zhong, 2010; Cui et al., 2010; Ni et al., 2010). The geometry of the phen and sulfate ligands is in good agreement with those reported in the three isomorphs complexes. The CdII metal ions has an octahedral coordination environment, with four N atoms from two phen ligands and two O atoms from a O,O'-bidentate sulfate group. The ZnII ion, S atom and the mid-carbon atom of the propane-1,3-diol solvent molecule lie on a special position of site symmetry 2 [symmetry code: -x + 1, y, - z + 1/2]. The dihedral angle (82.2°) between the two chelating NCCN groups are larger than that found in (II) [74.5°; Lu et al., 2006]. The Cd—N bond distance [2.3258 (19)–2.3441 (19) Å], the N—Cd—N bite angle [72.00 (7)°], the O—Cd—O bite angle [60.39 (8)°] and the Cd—O bond distance [2.3605 (17) Å] are are in good accord with those found in the (II) [71.91 (7)°, 2.327 (2)–2.343 (2) Å, 59.98 (9)° and 2.361 (2) Å, respectively]. Selected coordination bond distances and angles in Table 1. In the crystal structure, a pair of intermolecular O—H···O hydrogen bonds help to further stabilize structure (see Fig. 1 and Table 2).

Fig. 2 shows the crystal packing of the title compound. The molecular twofold axis is along the direction of the molecular dipole moment and the complexes are packed with their dipole moments alternately along the b axis directions.

Related literature top

For isostructural compounds, see: Cui et al. (2010); Ni et al. (2010); Zhong (2010a). For the ethane-1,2-diol solvate of the title complex, see: Lu et al. (2006). For background to bidentate-chelating sulfate complexes, see: Zhong et al.(2006, 2010b); Zhu et al. (2006). For the preparation, see: Zhong et al. (2010a). For background to coordination polymers, see: Batten & Robson (1998); Eddaoudi et al. (2001); Li et al. (2003).

Experimental top

Colorless block-shaped crystal of the title compound was obtained by the similar route that described by Zhong (2010a), with ZnSO4.7H2O in place of NiSO4.7H2O

Refinement top

All non-hydrogen atoms were refined anisotropically. All H atoms were placed in geometrically idealized positions and refined as riding atoms, with C—H = 0.97 Å and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

The central carbon of propane-1,3-diol solvent is disordered over two positions with site-occupancy factors of 1/2, sharing a common atom O3. The C13—O3 and C13'—O3 distances were restrained to 1.381 (5)Å and 1.387 (6) Å, respectively.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-numbering scheme with displacement ellipsoids drawn at the 50% probability level. The dashed lines represent O—H···O interactions. Unlabeled atoms are related to the labeled atoms by the symmetry operator(-x + 1, y, - z + 1/2).
[Figure 2] Fig. 2. Packing diagram of the title compound.
Bis(1,10-phenanthroline-κ2N,N')(sulfato- κ2O,O')cadmium(II) propane-1,3-diol solvate top
Crystal data top
[Cd(SO4)(C12H8N2)2]·C3H8O2F(000) = 1304
Mr = 644.98Dx = 1.691 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3776 reflections
a = 17.854 (4) Åθ = 3.1–27.5°
b = 12.520 (3) ŵ = 1.00 mm1
c = 13.519 (3) ÅT = 223 K
β = 123.01 (3)°Block, colorless
V = 2534.1 (13) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2880 independent reflections
Radiation source: fine-focus sealed tube2683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1923
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1216
Tmin = 0.691, Tmax = 0.826l = 1712
8349 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0391P)2 + 2.1837P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2880 reflectionsΔρmax = 0.75 e Å3
178 parametersΔρmin = 0.65 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0053 (3)
Crystal data top
[Cd(SO4)(C12H8N2)2]·C3H8O2V = 2534.1 (13) Å3
Mr = 644.98Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.854 (4) ŵ = 1.00 mm1
b = 12.520 (3) ÅT = 223 K
c = 13.519 (3) Å0.40 × 0.30 × 0.20 mm
β = 123.01 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2880 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2683 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.826Rint = 0.021
8349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0283 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.10Δρmax = 0.75 e Å3
2880 reflectionsΔρmin = 0.65 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.50000.174163 (16)0.25000.02229 (10)
S10.50000.06039 (5)0.25000.01961 (16)
O10.51467 (11)0.01117 (13)0.34685 (14)0.0300 (3)
O20.57895 (10)0.12744 (13)0.29112 (15)0.0306 (4)
N10.39140 (11)0.29051 (15)0.10875 (16)0.0222 (4)
N20.40091 (11)0.21462 (15)0.30577 (17)0.0234 (4)
C70.27252 (14)0.31996 (16)0.2610 (2)0.0237 (4)
C90.34479 (16)0.2062 (2)0.4312 (2)0.0306 (5)
H9A0.34980.17800.49820.037*
C20.32079 (15)0.39930 (19)0.0655 (2)0.0295 (5)
H2A0.31940.42320.13160.035*
C80.27880 (15)0.27765 (19)0.3615 (2)0.0290 (5)
H8A0.23810.29830.38060.035*
C100.40478 (16)0.17602 (17)0.4000 (2)0.0275 (5)
H10A0.44930.12680.44720.033*
C60.20366 (14)0.39348 (18)0.1827 (2)0.0282 (5)
H6A0.16190.41590.19910.034*
C110.33584 (13)0.28613 (16)0.23634 (19)0.0207 (4)
C50.19881 (15)0.43057 (17)0.0856 (2)0.0272 (5)
H5A0.15340.47770.03570.033*
C40.26246 (13)0.39846 (17)0.05810 (19)0.0232 (4)
C30.25909 (15)0.43470 (18)0.0429 (2)0.0283 (5)
H3A0.21500.48260.09410.034*
C10.38597 (16)0.32669 (17)0.0124 (2)0.0268 (5)
H1A0.42740.30250.00390.032*
C120.33059 (14)0.32544 (15)0.13234 (19)0.0204 (4)
C140.50000.4518 (3)0.25000.0452 (10)
O30.55944 (17)0.32203 (16)0.1763 (2)0.0548 (6)
H3B0.55020.26070.18830.082*
C13'0.5787 (6)0.3855 (7)0.2714 (7)0.084 (2)*0.50
H13A0.59860.34010.33960.101*0.50
H13B0.62760.43300.28970.101*0.50
C130.4872 (3)0.3854 (4)0.1485 (4)0.0295 (10)*0.50
H13E0.47490.43290.08460.035*0.50
H13C0.43540.34000.12010.035*0.50
H14A0.44840.49760.22160.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01994 (13)0.02154 (14)0.02924 (15)0.0000.01589 (10)0.000
S10.0176 (3)0.0208 (4)0.0207 (4)0.0000.0106 (3)0.000
O10.0381 (9)0.0256 (7)0.0242 (8)0.0034 (7)0.0156 (7)0.0016 (6)
O20.0249 (8)0.0319 (9)0.0366 (9)0.0073 (6)0.0178 (7)0.0025 (7)
N10.0218 (9)0.0223 (9)0.0254 (9)0.0008 (7)0.0147 (7)0.0011 (7)
N20.0227 (9)0.0231 (9)0.0274 (10)0.0011 (7)0.0155 (8)0.0017 (7)
C70.0225 (10)0.0246 (11)0.0262 (11)0.0013 (7)0.0147 (9)0.0048 (9)
C90.0363 (12)0.0335 (12)0.0301 (12)0.0001 (10)0.0234 (11)0.0029 (10)
C20.0349 (12)0.0303 (12)0.0250 (11)0.0036 (10)0.0174 (10)0.0012 (10)
C80.0297 (11)0.0317 (12)0.0341 (13)0.0002 (9)0.0229 (10)0.0019 (10)
C100.0273 (11)0.0278 (12)0.0304 (12)0.0026 (8)0.0177 (10)0.0051 (9)
C60.0236 (10)0.0301 (12)0.0332 (12)0.0040 (8)0.0170 (9)0.0054 (10)
C110.0198 (9)0.0191 (10)0.0247 (11)0.0017 (7)0.0131 (8)0.0027 (8)
C50.0235 (10)0.0252 (11)0.0292 (12)0.0045 (8)0.0119 (9)0.0017 (9)
C40.0224 (10)0.0204 (10)0.0243 (10)0.0011 (8)0.0112 (8)0.0030 (8)
C30.0271 (11)0.0266 (12)0.0257 (11)0.0009 (8)0.0107 (9)0.0016 (9)
C10.0293 (11)0.0276 (12)0.0293 (12)0.0022 (8)0.0196 (10)0.0023 (9)
C120.0189 (9)0.0192 (10)0.0231 (10)0.0022 (7)0.0115 (8)0.0029 (8)
C140.050 (2)0.0260 (19)0.060 (3)0.0000.030 (2)0.000
O30.0824 (17)0.0422 (12)0.0729 (16)0.0064 (10)0.0636 (15)0.0086 (10)
Geometric parameters (Å, º) top
Cd1—N2i2.3255 (19)C8—H8A0.9300
Cd1—N22.3255 (19)C10—H10A0.9300
Cd1—N1i2.344 (2)C6—C51.351 (3)
Cd1—N12.3439 (19)C6—H6A0.9300
Cd1—O1i2.3608 (17)C11—C121.444 (3)
Cd1—O12.3608 (17)C5—C41.432 (3)
Cd1—S12.9366 (10)C5—H5A0.9300
S1—O2i1.4652 (16)C4—C31.409 (3)
S1—O21.4652 (16)C4—C121.412 (3)
S1—O11.4873 (17)C3—H3A0.9300
S1—O1i1.4873 (17)C1—H1A0.9300
N1—C11.332 (3)C14—C13i1.512 (5)
N1—C121.360 (3)C14—C131.512 (5)
N2—C101.328 (3)C14—C13'1.518 (9)
N2—C111.358 (3)C14—C13'i1.518 (9)
C7—C81.405 (3)C14—H14A0.9699
C7—C111.407 (3)O3—C131.380 (5)
C7—C61.436 (3)O3—C13'1.385 (7)
C9—C81.367 (3)O3—H3B0.8200
C9—C101.400 (3)C13'—H13A0.9700
C9—H9A0.9300C13'—H13B0.9700
C2—C31.367 (3)C13—H13E0.9700
C2—C11.398 (3)C13—H13C0.9700
C2—H2A0.9300
N2i—Cd1—N2154.84 (9)N2—C10—C9122.8 (2)
N2i—Cd1—N1i72.00 (7)N2—C10—H10A118.6
N2—Cd1—N1i92.19 (7)C9—C10—H10A118.6
N2i—Cd1—N192.19 (7)C5—C6—C7120.8 (2)
N2—Cd1—N172.00 (7)C5—C6—H6A119.6
N1i—Cd1—N1103.15 (9)C7—C6—H6A119.6
N2i—Cd1—O1i83.26 (6)N2—C11—C7122.0 (2)
N2—Cd1—O1i119.60 (6)N2—C11—C12118.37 (18)
N1i—Cd1—O1i141.41 (6)C7—C11—C12119.60 (19)
N1—Cd1—O1i107.02 (6)C6—C5—C4121.1 (2)
N2i—Cd1—O1119.60 (6)C6—C5—H5A119.5
N2—Cd1—O183.26 (6)C4—C5—H5A119.5
N1i—Cd1—O1107.02 (6)C3—C4—C12117.6 (2)
N1—Cd1—O1141.41 (6)C3—C4—C5122.7 (2)
O1i—Cd1—O160.38 (8)C12—C4—C5119.7 (2)
N2i—Cd1—S1102.58 (5)C2—C3—C4119.9 (2)
N2—Cd1—S1102.58 (5)C2—C3—H3A120.1
N1i—Cd1—S1128.42 (5)C4—C3—H3A120.1
N1—Cd1—S1128.42 (5)N1—C1—C2123.0 (2)
O1i—Cd1—S130.19 (4)N1—C1—H1A118.5
O1—Cd1—S130.19 (4)C2—C1—H1A118.5
O2i—S1—O2110.10 (14)N1—C12—C4122.0 (2)
O2i—S1—O1110.53 (10)N1—C12—C11118.83 (18)
O2—S1—O1109.85 (10)C4—C12—C11119.14 (19)
O2i—S1—O1i109.85 (10)C13i—C14—C13113.3 (4)
O2—S1—O1i110.53 (10)C13i—C14—C13'82.0 (4)
O1—S1—O1i105.92 (14)C13—C14—C13'62.5 (4)
O2i—S1—Cd1124.95 (7)C13i—C14—C13'i62.5 (4)
O2—S1—Cd1124.95 (7)C13—C14—C13'i82.0 (4)
O1—S1—Cd152.96 (7)C13'—C14—C13'i113.7 (8)
O1i—S1—Cd152.96 (7)C13i—C14—H14A109.0
S1—O1—Cd196.85 (8)C13—C14—H14A109.0
C1—N1—C12118.56 (19)C13'—C14—H14A168.7
C1—N1—Cd1126.53 (15)C13'i—C14—H14A70.5
C12—N1—Cd1114.87 (14)C13—O3—C13'69.3 (4)
C10—N2—C11118.73 (19)C13—O3—H3B109.5
C10—N2—Cd1125.46 (15)C13'—O3—H3B109.2
C11—N2—Cd1115.78 (14)O3—C13'—C14113.6 (6)
C8—C7—C11117.7 (2)O3—C13'—H13A108.8
C8—C7—C6122.7 (2)C14—C13'—H13A108.8
C11—C7—C6119.6 (2)O3—C13'—H13B108.8
C8—C9—C10118.8 (2)C14—C13'—H13B108.8
C8—C9—H9A120.6H13A—C13'—H13B107.7
C10—C9—H9A120.6O3—C13—C14114.3 (3)
C3—C2—C1119.0 (2)O3—C13—H13E108.7
C3—C2—H2A120.5C14—C13—H13E108.7
C1—C2—H2A120.5O3—C13—H13C108.7
C9—C8—C7119.9 (2)C14—C13—H13C108.7
C9—C8—H8A120.1H13E—C13—H13C107.6
C7—C8—H8A120.1
N2i—Cd1—S1—O2i140.99 (10)N1—Cd1—N2—C113.31 (14)
N2—Cd1—S1—O2i39.01 (10)O1i—Cd1—N2—C11103.06 (15)
N1i—Cd1—S1—O2i142.14 (10)O1—Cd1—N2—C11153.30 (15)
N1—Cd1—S1—O2i37.86 (10)S1—Cd1—N2—C11129.96 (14)
O1i—Cd1—S1—O2i89.51 (12)C10—C9—C8—C70.4 (4)
O1—Cd1—S1—O2i90.49 (12)C11—C7—C8—C90.1 (3)
N2i—Cd1—S1—O239.01 (10)C6—C7—C8—C9178.6 (2)
N2—Cd1—S1—O2140.99 (10)C11—N2—C10—C90.3 (3)
N1i—Cd1—S1—O237.86 (10)Cd1—N2—C10—C9177.81 (17)
N1—Cd1—S1—O2142.14 (10)C8—C9—C10—N20.6 (4)
O1i—Cd1—S1—O290.49 (12)C8—C7—C6—C5178.6 (2)
O1—Cd1—S1—O289.51 (12)C11—C7—C6—C50.0 (3)
N2i—Cd1—S1—O1128.52 (9)C10—N2—C11—C70.3 (3)
N2—Cd1—S1—O151.48 (9)Cd1—N2—C11—C7178.50 (15)
N1i—Cd1—S1—O151.65 (10)C10—N2—C11—C12178.31 (19)
N1—Cd1—S1—O1128.35 (10)Cd1—N2—C11—C123.4 (2)
O1i—Cd1—S1—O1180.0C8—C7—C11—N20.4 (3)
N2i—Cd1—S1—O1i51.48 (9)C6—C7—C11—N2178.3 (2)
N2—Cd1—S1—O1i128.52 (9)C8—C7—C11—C12178.45 (19)
N1i—Cd1—S1—O1i128.35 (10)C6—C7—C11—C120.2 (3)
N1—Cd1—S1—O1i51.65 (10)C7—C6—C5—C40.5 (3)
O1—Cd1—S1—O1i180.0C6—C5—C4—C3179.4 (2)
O2i—S1—O1—Cd1118.93 (9)C6—C5—C4—C121.1 (3)
O2—S1—O1—Cd1119.38 (9)C1—C2—C3—C40.5 (3)
O1i—S1—O1—Cd10.0C12—C4—C3—C20.3 (3)
N2i—Cd1—O1—S161.43 (10)C5—C4—C3—C2178.6 (2)
N2—Cd1—O1—S1129.74 (9)C12—N1—C1—C20.3 (3)
N1i—Cd1—O1—S1140.02 (8)Cd1—N1—C1—C2177.53 (16)
N1—Cd1—O1—S180.06 (12)C3—C2—C1—N10.5 (3)
O1i—Cd1—O1—S10.0C1—N1—C12—C40.0 (3)
N2i—Cd1—N1—C120.70 (18)Cd1—N1—C12—C4178.00 (15)
N2—Cd1—N1—C1179.26 (19)C1—N1—C12—C11179.70 (19)
N1i—Cd1—N1—C192.72 (18)Cd1—N1—C12—C112.3 (2)
O1i—Cd1—N1—C162.92 (19)C3—C4—C12—N10.1 (3)
O1—Cd1—N1—C1126.49 (17)C5—C4—C12—N1178.45 (19)
S1—Cd1—N1—C187.28 (18)C3—C4—C12—C11179.68 (19)
N2i—Cd1—N1—C12157.16 (14)C5—C4—C12—C111.3 (3)
N2—Cd1—N1—C122.88 (14)N2—C11—C12—N10.8 (3)
N1i—Cd1—N1—C1285.14 (14)C7—C11—C12—N1178.89 (19)
O1i—Cd1—N1—C12119.22 (14)N2—C11—C12—C4178.97 (19)
O1—Cd1—N1—C1255.65 (18)C7—C11—C12—C40.9 (3)
S1—Cd1—N1—C1294.86 (14)C13—O3—C13'—C144.0 (5)
N2i—Cd1—N2—C10128.08 (18)C13i—C14—C13'—O3117.7 (7)
N1i—Cd1—N2—C1078.30 (19)C13—C14—C13'—O33.9 (5)
N1—Cd1—N2—C10178.6 (2)C13'i—C14—C13'—O362.5 (5)
O1i—Cd1—N2—C1078.82 (19)C13'—O3—C13—C144.1 (5)
O1—Cd1—N2—C1028.59 (18)C13i—C14—C13—O362.8 (3)
S1—Cd1—N2—C1051.92 (18)C13'—C14—C13—O33.9 (5)
N2i—Cd1—N2—C1150.04 (14)C13'i—C14—C13—O3118.1 (4)
N1i—Cd1—N2—C1199.81 (15)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O20.822.052.806 (3)153

Experimental details

Crystal data
Chemical formula[Cd(SO4)(C12H8N2)2]·C3H8O2
Mr644.98
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)17.854 (4), 12.520 (3), 13.519 (3)
β (°) 123.01 (3)
V3)2534.1 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.691, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
8349, 2880, 2683
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.10
No. of reflections2880
No. of parameters178
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.65

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N22.3255 (19)S1—O11.4873 (17)
Cd1—N12.3439 (19)C14—C131.512 (5)
Cd1—O12.3608 (17)O3—C131.380 (5)
S1—O21.4652 (16)
N2—Cd1—N172.00 (7)O1—S1—O1i105.92 (14)
O1i—Cd1—O160.38 (8)C13i—C14—C13113.3 (4)
O2i—S1—O2110.10 (14)O3—C13—C14114.3 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O20.822.052.806 (3)153.3
 

Acknowledgements

This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010–17) and the Undergraduate Scientific and Technological Innovation Project of Nanjing College of Chemical Technology.

References

First citationBatten, S. R. & Robson, R. (1998). Chem. Commun. pp. 1067–1068.  Google Scholar
First citationCui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationLi, Y. G., Hao, N., Lu, Y., Wang, E. B., Kang, Z. H. & Hu, C.W. (2003). Inorg. Chem. 42, 3119–3124.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLu, W.-J., Zhong, K.-L. & Zhu, Y.-M. (2006). Acta Cryst. E62, m891–m893.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNi, C., Zhong, K.-L. & Cui, J.-D. (2010). Acta Cryst. E66, m746–m747.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, K.-L. (2010a). Acta Cryst. E66, m247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L. (2010b). Acta Cryst. E66, m131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631–m633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006). Acta Cryst. E62, m2725–m2726.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m817-m818
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds