organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro­phen­yl)maleamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 1 June 2010; accepted 4 June 2010; online 16 June 2010)

In the title compound, C10H8ClNO3, the molecular conformation is stabilized by two intra­molecular hydrogen bonds. The first is a short O—H⋯O hydrogen bond within the maleamic acid unit and the second is a C—H⋯O hydrogen bond which connects the amide group with the phenyl ring. The maleamic acid unit is essentially planar, with an r.m.s. deviation of 0.044 Å, and makes a dihedral angle of 15.2 (1)° with the phenyl ring. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into C(7) chains running [010].

Related literature

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda et al. (2010a[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2010a). Acta Cryst. E66, o51.],b[Gowda, B. T., Tokarčík, M., Shakuntala, K., Kožíšek, J. & Fuess, H. (2010b). Acta Cryst. E66, o1554.]); Prasad et al. (2002[Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296-o1297.]); Shakuntala et al. (2009[Shakuntala, K., Gowda, B. T., Tokarčík, M. & Kožíšek, J. (2009). Acta Cryst. E65, o3119.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8ClNO3

  • Mr = 225.62

  • Monoclinic, P 21 /c

  • a = 10.7779 (3) Å

  • b = 13.2103 (4) Å

  • c = 7.1372 (2) Å

  • β = 104.976 (3)°

  • V = 981.69 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 295 K

  • 0.55 × 0.09 × 0.06 mm

Data collection
  • Oxford Diffraction Gemini R, CCD diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.852, Tmax = 0.982

  • 15632 measured reflections

  • 1829 independent reflections

  • 1533 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.081

  • S = 1.08

  • 1829 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.90 1.60 2.4992 (14) 176
N1—H1N⋯O3i 0.86 1.99 2.8403 (15) 172
C6—H6⋯O1 0.93 2.31 2.8658 (16) 118
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of studying the effect of ring and side chain substitutions on the crystal structures of biologically significant amides (Gowda et al., 2010a,b; Prasad et al., 2002; Shakuntala et al., 2009), the crystal structure of N-(3-chlorophenyl)maleamic acid (I) has been determined (Fig. 1).The conformations of the N—H and the C=O bonds in the amide segment are anti to each other. The conformation of the N—H bond is also anti to the meta-Cl group in the phenyl ring.In the maleamic acid moiety, the amide C=O bond is anti to the adjacent C—H bond, while the carboxyl C=O bond is syn to the adjacent C—H bond. The observed rare anti conformation of the C=O and O—H bonds of the acid group is similar to that observed in N-(2-methylphenyl)-maleamic acid (Gowda et al., 2010b), N-(2,5-dichlorophenyl)-maleamic acid (Shakuntala et al., 2009) and N-(3,5-dichlorophenyl)- maleamic acid (Gowda et al., 2010a).

The molecular structure of (I) is stabilized by two intramolecular hydrogen bonds (Figure 1): the first is a short O—H···O hydrogen bond within maleamic acid unit and the second is a C—H···O hydrogen bond which connects the amide group with the phenyl ring. Amidic O1 atom acts as bifurcated acceptor of O2—H2A···O1 and C6—H6···O1 intramolecular hydrogen bonds (Table 1).The maleamic acid unit is essentially planar, with r.m.s.deviation of 0.044 Å and makes dihedral angle of 15.2 (1)° with the phenyl ring. The torsion angle C1—N1—C5—C6 = -17.6 (2)° defines the orientation of the phenyl ring towards the central amide group –NHCO. The molecular structure is stabilized by two types intramolecular C—H···O and O—H···O interactions with H···O distances of 1.60 and 2.31 Å respectively and one intermolecular N—H···O hydrogen bonds link the molecules into chains with graph-set notation C(7) (Bernstein et al., 1995) running along the [0 1 0] direction, Table 1, Figure 2.

Related literature top

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda et al. (2010a,b); Prasad et al. (2002); Shakuntala et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 3-chloroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was warmed with stirring for over 30 min and set aside for an additional 30 min at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3-chloroaniline. The resultant solid N-(3-chlorophenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra.

Rod like colourless single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement top

All H atoms were found in difference maps and further treated as riding atoms with C—H = 0.93 Å, N—H = 0.86Å and O—H = 0.90 Å. The Uiso(H) values were set at 1.2Ueq(C aromatic, N) and 1.5Ueq(O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii and a short intramolecular O—H···O bond as dashed line.
[Figure 2] Fig. 2. Part of crystal structure of (I) showing one-dimensional chain of molecules extending along the [0 1 0] direction and linked by intermolecular N–H···O hydrogen bonds. Hydrogen bonds are shown as dashed lines. Symmetry code (i): -x + 1, y - 1/2, -z + 3/2.
N-(3-Chlorophenyl)maleamic acid top
Crystal data top
C10H8ClNO3F(000) = 464
Mr = 225.62Dx = 1.527 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8764 reflections
a = 10.7779 (3) Åθ = 2.0–29.5°
b = 13.2103 (4) ŵ = 0.37 mm1
c = 7.1372 (2) ÅT = 295 K
β = 104.976 (3)°Rod, colourless
V = 981.69 (5) Å30.55 × 0.09 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R, CCD
diffractometer
1829 independent reflections
Graphite monochromator1533 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.027
ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1313
Tmin = 0.852, Tmax = 0.982k = 1616
15632 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.0776P]
where P = (Fo2 + 2Fc2)/3
1829 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C10H8ClNO3V = 981.69 (5) Å3
Mr = 225.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7779 (3) ŵ = 0.37 mm1
b = 13.2103 (4) ÅT = 295 K
c = 7.1372 (2) Å0.55 × 0.09 × 0.06 mm
β = 104.976 (3)°
Data collection top
Oxford Diffraction Gemini R, CCD
diffractometer
1829 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
1533 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.982Rint = 0.027
15632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.08Δρmax = 0.16 e Å3
1829 reflectionsΔρmin = 0.16 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31064 (12)0.29347 (9)0.57205 (19)0.0320 (3)
C20.44462 (13)0.28772 (10)0.6940 (2)0.0372 (3)
H20.47740.22280.72280.045*
C30.52416 (13)0.36307 (11)0.7676 (2)0.0401 (3)
H30.60430.34150.84030.048*
C40.50988 (14)0.47472 (11)0.7564 (2)0.0426 (4)
C50.12674 (13)0.18104 (10)0.42427 (19)0.0319 (3)
C60.03012 (12)0.25287 (10)0.38134 (18)0.0328 (3)
H60.04630.31970.42140.039*
C70.09097 (13)0.22302 (11)0.27750 (19)0.0367 (3)
C80.11862 (14)0.12464 (12)0.2179 (2)0.0444 (4)
H80.2010.10610.1490.053*
C90.02125 (16)0.05452 (12)0.2627 (2)0.0509 (4)
H90.03830.01230.22360.061*
C100.10121 (14)0.08138 (11)0.3646 (2)0.0432 (4)
H100.16620.03310.39320.052*
N10.25350 (10)0.20331 (8)0.53348 (16)0.0346 (3)
H1N0.29980.15190.58130.042*
O10.25666 (9)0.37411 (7)0.51038 (16)0.0479 (3)
O20.40462 (10)0.51612 (8)0.65145 (18)0.0565 (3)
H2A0.34850.46730.59730.085*
O30.59801 (11)0.52618 (9)0.84566 (19)0.0666 (4)
Cl10.21185 (3)0.31393 (3)0.22262 (6)0.05280 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0286 (7)0.0273 (7)0.0383 (7)0.0013 (5)0.0054 (6)0.0006 (6)
C20.0316 (7)0.0292 (7)0.0465 (8)0.0040 (6)0.0023 (6)0.0016 (6)
C30.0284 (7)0.0370 (8)0.0484 (8)0.0011 (6)0.0016 (6)0.0001 (6)
C40.0387 (8)0.0345 (8)0.0524 (9)0.0072 (6)0.0080 (7)0.0053 (6)
C50.0306 (7)0.0300 (7)0.0336 (7)0.0038 (5)0.0054 (6)0.0015 (5)
C60.0314 (7)0.0286 (7)0.0358 (7)0.0026 (6)0.0042 (6)0.0003 (5)
C70.0307 (7)0.0427 (8)0.0344 (7)0.0021 (6)0.0045 (6)0.0031 (6)
C80.0362 (8)0.0462 (9)0.0461 (8)0.0128 (7)0.0019 (6)0.0033 (7)
C90.0523 (10)0.0333 (8)0.0626 (10)0.0119 (7)0.0069 (8)0.0096 (7)
C100.0411 (8)0.0294 (7)0.0560 (9)0.0008 (6)0.0070 (7)0.0021 (6)
N10.0293 (6)0.0257 (6)0.0444 (7)0.0022 (5)0.0014 (5)0.0023 (5)
O10.0340 (5)0.0281 (5)0.0707 (7)0.0001 (4)0.0058 (5)0.0070 (5)
O20.0445 (6)0.0282 (6)0.0871 (9)0.0008 (5)0.0004 (6)0.0016 (5)
O30.0538 (7)0.0450 (7)0.0886 (9)0.0191 (6)0.0038 (6)0.0113 (6)
Cl10.0326 (2)0.0540 (3)0.0625 (3)0.00544 (16)0.00438 (17)0.00293 (18)
Geometric parameters (Å, º) top
C1—O11.2389 (16)C6—C71.3813 (18)
C1—N11.3364 (17)C6—H60.93
C1—C21.4828 (19)C7—C81.376 (2)
C2—C31.330 (2)C7—Cl11.7404 (15)
C2—H20.93C8—C91.374 (2)
C3—C41.483 (2)C8—H80.93
C3—H30.93C9—C101.379 (2)
C4—O31.2073 (18)C9—H90.93
C4—O21.3069 (18)C10—H100.93
C5—C61.3834 (19)N1—H1N0.86
C5—C101.3891 (19)O2—H2A0.90
C5—N11.4178 (17)
O1—C1—N1122.96 (12)C5—C6—H6120.8
O1—C1—C2123.32 (12)C8—C7—C6122.32 (13)
N1—C1—C2113.72 (11)C8—C7—Cl1119.50 (11)
C3—C2—C1128.61 (13)C6—C7—Cl1118.19 (11)
C3—C2—H2115.7C9—C8—C7118.25 (13)
C1—C2—H2115.7C9—C8—H8120.9
C2—C3—C4132.50 (13)C7—C8—H8120.9
C2—C3—H3113.7C8—C9—C10121.25 (14)
C4—C3—H3113.7C8—C9—H9119.4
O3—C4—O2120.99 (14)C10—C9—H9119.4
O3—C4—C3118.36 (14)C9—C10—C5119.50 (14)
O2—C4—C3120.65 (13)C9—C10—H10120.2
C6—C5—C10120.27 (12)C5—C10—H10120.2
C6—C5—N1122.87 (11)C1—N1—C5128.71 (11)
C10—C5—N1116.85 (12)C1—N1—H1N115.6
C7—C6—C5118.41 (12)C5—N1—H1N115.6
C7—C6—H6120.8C4—O2—H2A109.5
O1—C1—C2—C35.1 (2)Cl1—C7—C8—C9179.82 (12)
N1—C1—C2—C3175.30 (14)C7—C8—C9—C100.0 (2)
C1—C2—C3—C40.0 (3)C8—C9—C10—C50.4 (2)
C2—C3—C4—O3177.02 (16)C6—C5—C10—C90.2 (2)
C2—C3—C4—O23.3 (3)N1—C5—C10—C9178.16 (13)
C10—C5—C6—C70.4 (2)O1—C1—N1—C51.2 (2)
N1—C5—C6—C7178.62 (12)C2—C1—N1—C5179.26 (12)
C5—C6—C7—C80.8 (2)C6—C5—N1—C117.6 (2)
C5—C6—C7—Cl1179.60 (10)C10—C5—N1—C1164.11 (13)
C6—C7—C8—C90.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.901.602.4992 (14)176
N1—H1N···O3i0.861.992.8403 (15)172
C6—H6···O10.932.312.8658 (16)118
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H8ClNO3
Mr225.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.7779 (3), 13.2103 (4), 7.1372 (2)
β (°) 104.976 (3)
V3)981.69 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.55 × 0.09 × 0.06
Data collection
DiffractometerOxford Diffraction Gemini R, CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.852, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
15632, 1829, 1533
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.081, 1.08
No. of reflections1829
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.901.602.4992 (14)176
N1—H1N···O3i0.861.992.8403 (15)172
C6—H6···O10.932.312.8658 (16)118
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2010a). Acta Cryst. E66, o51.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Shakuntala, K., Kožíšek, J. & Fuess, H. (2010b). Acta Cryst. E66, o1554.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296–o1297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Gowda, B. T., Tokarčík, M. & Kožíšek, J. (2009). Acta Cryst. E65, o3119.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds