organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1784-o1785

4-[2-(2,2-Di­methyl-4,6-dioxo-1,3-dioxan-5-yl­­idene)hydrazin-1-yl]benzo­nitrile

aDepartment of Chemistry, Hitit University, 19030 Ulukavak, Çorum, Turkey, bDepartment of Chemistry, Gazi University, 06500 Teknikokullar, Ankara, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, dDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, and eDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 17 June 2010; accepted 21 June 2010; online 26 June 2010)

In the title compound, C13H11N3O4, the dioxane ring adopts an envelope conformation with the C atom bonded to the dimethyl group in the flap position [deviation = 0.613 (1) Å]. The nitrile group and the attached benzene ring are roughly coplanar [maximum deviation = 0.087 (1) Å]. An intra­molecular N—H⋯O hydrogen bond involving the hydrazinyl group generates an S(6) ring. The N—N and C—N bond lengths indicate that the compound may be a mixture of the azo and hydrazone tautomeric forms but the presence of the N-bound H atom supports the hydrazone form. The crystal structure is stabilized by weak inter­molecular C—H⋯O, C—H⋯N and C—H⋯π inter­actions.

Related literature

For the applications of related azo compounds, see: Branger et al. (1997[Branger, C., Lequan, M., Lequan, R. M., Large, M. & Kajzar, F. (1997). Chem. Phys. Lett. 272, 265-270.]); Buchel et al. (1995[Buchel, M., Sekkat, Z., Paul, S., Weichart, B., Menzel, H. & Knoll, W. (1995). Langmuir, 11, 4460-4466.]); Gale et al. (1998[Gale, P. A., Chen, Z., Drew, M. G. B., Heath, J. A. & Beer, P. D. (1998). Polyhedron, 4, 405-412.]); Ikeda & Tsutsumi (1995[Ikeda, T. & Tsutsumi, O. (1995). Science, 268, 1873-1875.]); Kang et al. (2000[Kang, H. C., Lee, B. M., Yoon, J. & Yoon, M. (2000). J. Colloid Interface Sci. 231, 255-264.]); Karcı et al. (2004[Karcı, F., Şener, İ. & Deligöz, H. (2004). Dyes Pigments, 62, 131-140.]); Kim et al. (1995[Kim, D. Y., Tripathy, S. K., Li, L. & Kumar, J. (1995). Appl. Phys. Lett. 66, 1166-1168.]); Kobrakov et al. (2004[Kobrakov, K. I., Glyadyaeva, O. Yu., Stankevich, G. S. & Kovtun, L. G. (2004). Fibre Chem. 36, 41-42.]); Natansohn et al. (1992[Natansohn, A., Rochon, P., Gosselin, J. & Xie, S. (1992). Macromolecules, 25, 2268-2273.]); Rochon et al. (1995[Rochon, P., Battalla, E. & Natansohn, A. (1995). Appl. Phys. Lett. 66, 136-138.]). For related hydrazone structures, see: Çolak et al. (2010[Çolak, N., Aksakal, D., Andaç, Ö. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1165-o1166.]); Pavlovic et al. (2009[Pavlovic, G., Racane, L., Cicak, H. & Tralic-Kulenovic, V. (2009). Dyes Pigments, 83, 354-362.]); Seferoğlu et al. (2008[Seferoğlu, Z., Ertan, N., Hökelek, T. & Şahin, E. (2008). Dyes Pigments, 77, 614-625.]); Seferoğlu et al. (2009[Seferoğlu, Z., Ertan, N., Kickelbick, G. & Hökelek, T. (2009). Dyes Pigments, 82, 20-25.]); Wojciechowski & Szymezak (2007[Wojciechowski, K. & Szymezak, A. (2007). Dyes Pigments, 75, 45-51.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3O4

  • Mr = 273.25

  • Monoclinic, P 21 /n

  • a = 9.7617 (2) Å

  • b = 11.0023 (2) Å

  • c = 11.4753 (3) Å

  • β = 93.796 (1)°

  • V = 1229.76 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.46 × 0.43 × 0.29 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.968

  • 11746 measured reflections

  • 3098 independent reflections

  • 2591 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.04

  • 3098 reflections

  • 225 parameters

  • All H-atom parameters refined

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.92 (2) 1.958 (16) 2.6674 (13) 132 (1)
C9—H9⋯N1i 0.94 (2) 2.624 (15) 3.5320 (16) 164 (1)
C10—H10⋯N3ii 0.99 (2) 2.485 (15) 3.3876 (16) 152 (1)
C12—H123⋯O2iii 0.97 (2) 2.527 (17) 3.4454 (15) 159 (1)
C12—H122⋯Cg1iv 0.98 (2) 2.491 (15) 3.4575 (13) 171 (1)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+2; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

It has been known for many years that the azo compounds are widely used class of dyes due to their applications in various fields such as the dyeing of textile fibers, the coloring of different materials, colored plastics and electrochemical sensors (Kobrakov et al., 2004; Karcı et al., 2004; Gale et al., 1998). Azo dyes have been attracting intensive interest for their potential use in optical data storage (Natansohn et al., 1992), optical switching (Ikeda & Tsutsumi, 1995), polarization holography (Kim et al., 1995; Rochon et al., 1995), optical modulation (Buchel et al., 1995), nonlinear optics (Branger et al., 1997) and photolabile surfactants (Kang et al., 2000).

The dyes may exist in two possible tautomeric forms, namely azo form and hydrazone form. The azo-hydrazone tautomerism is quite interesting from a theoretical and practical point of view because the two tautomers have different properties. Azo dyes are known to exist in the azo-hydrazone tautomeric forms (Çolak et al., 2010; Pavlovic et al., 2009; Seferoğlu et al., 2009; Seferoğlu et al., 2008; Wojciechowski & Szymezak, 2007). We herein report the crystal structure of the title compound, (I).

The title compound, (I), contains benzonitrile and 2,2-dimethyl-1,3-dioxane -4,6-dione groups connected via a hydrazinyl group (Fig. 1). In (I), N1—N2 [1.3082 (14) Å] bond length is between the NN double bond [1.20–1.28 Å for a real azo compound] and N—N single bond [longer than 1.4 Å] lengths. The N1—C3 and N2—C5 bond lengths are 1.3116 (14) and 1.4075 (14) Å, respectively. The carbonyl O atoms O3 and O4 slightly deviate from the N1/C2–C4 plane by 0.255 (2) and 0.259 (2) Å, respectively. So, the title compound may exist both in azo and hydrazone tautomeric forms, and is mainly in the hydrazone tautomeric form. The C8—C13 [1.4418 (15) Å] bond length is longer for a C(sp2)—C(sp1) bond, but in agreement with the previously reported value [1.442 (3) Å; Çolak et al., 2010).

An intramolecular N2—H2···O3 hydrogen bond (Table 1) results in the formation of a nearly planar [with a maximum deviation of 0.056 (1) Å for atom C4] six-membered ring C (O3/N1/N2/H2/C3/C4), which is oriented with respect to the benzonitrile ring B (C5–C10) at a dihedral angle of 7.8 (43)°. Atoms N1, N2, N3 and C13 are displaced by -0.162 (2), 0.038 (2), 0.049 (2) and 0.028 (2) Å from the plane of ring B, respectively. The benzonitrile and hydrazinyl groups (4-hydrazinylbenzonitrile) are essentially coplanar [with a maximum deviation of -0.087 (1) Å for atom N1]. The dioxane ring A (O1/O2/C1–C4) is not planar having envelope conformation with atom C1 displaced by 0.613 (1) Å from the plane of the other ring atoms.

In the crystal structure, weak C—H···O and C—H···N hydrogen bonds (Table 1) may be effective in the stabilization of the crystal packing. There also exists a weak C—H···π interaction (Table 1).

Related literature top

For the applications of related azo compounds, see: Branger et al. (1997); Buchel et al. (1995); Gale et al. (1998); Ikeda & Tsutsumi (1995); Kang et al. (2000); Karcı et al. (2004); Kim et al. (1995); Kobrakov et al. (2004); Natansohn et al. (1992); Rochon et al. (1995). For related hydrazone structures, see: Çolak et al. (2010); Pavlovic et al. (2009); Seferoğlu et al. (2008); Seferoğlu et al. (2009); Wojciechowski & Szymezak (2007).

Experimental top

A hydrochloric acid solution (2.5 ml) of 4-aminobenzonitrile (1.18 g, 10 mmol) and an aqueous solution (10 ml) of sodium nitrite (0.69 g, 10 mmol) were mixed and stirred at 273 K for 1 h. To this solution, an ethanol solution (10 ml) of the coupling component 2,2-dimethyl-1,3-dioxane-4,6-dione (1.44 g, 10 mmol) was added and the stirring was continued at 273 K for 4 h. The resulting product was filtered and washed with water, dried and crystallized from ethanol (yield 1.88 g, 69%; m.p. 440–442 K).

Refinement top

H atoms were located in difference Fourier maps and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a hydrogen bond.
4-[2-(2,2-Dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)hydrazin-1-yl]benzonitrile top
Crystal data top
C13H11N3O4F(000) = 568
Mr = 273.25Dx = 1.476 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4103 reflections
a = 9.7617 (2) Åθ = 2.6–28.4°
b = 11.0023 (2) ŵ = 0.11 mm1
c = 11.4753 (3) ÅT = 100 K
β = 93.796 (1)°Block, yellow
V = 1229.76 (5) Å30.46 × 0.43 × 0.29 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3098 independent reflections
Radiation source: fine-focus sealed tube2591 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 28.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.950, Tmax = 0.968k = 1414
11746 measured reflectionsl = 158
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.2729P]
where P = (Fo2 + 2Fc2)/3
3098 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H11N3O4V = 1229.76 (5) Å3
Mr = 273.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7617 (2) ŵ = 0.11 mm1
b = 11.0023 (2) ÅT = 100 K
c = 11.4753 (3) Å0.46 × 0.43 × 0.29 mm
β = 93.796 (1)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3098 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2591 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.968Rint = 0.029
11746 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108All H-atom parameters refined
S = 1.04Δρmax = 0.38 e Å3
3098 reflectionsΔρmin = 0.24 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16363 (8)0.74524 (7)0.85585 (7)0.0172 (2)
O20.17892 (8)0.56739 (7)0.97179 (7)0.01470 (19)
O30.35656 (9)0.44276 (8)0.96914 (7)0.0187 (2)
O40.32521 (9)0.79574 (8)0.73794 (8)0.0249 (2)
N10.44403 (10)0.56888 (9)0.76510 (9)0.0165 (2)
N20.51381 (10)0.46953 (9)0.78943 (9)0.0159 (2)
H20.4942 (16)0.4243 (15)0.8538 (15)0.028 (4)*
N31.03756 (11)0.29578 (10)0.47015 (10)0.0232 (2)
C10.08704 (11)0.64589 (10)0.90176 (10)0.0143 (2)
C20.27845 (12)0.71950 (11)0.79881 (10)0.0172 (2)
C30.34022 (12)0.59901 (10)0.82608 (10)0.0155 (2)
C40.29477 (11)0.52812 (10)0.92521 (10)0.0144 (2)
C50.62374 (11)0.43844 (10)0.72180 (10)0.0148 (2)
C60.64458 (13)0.49922 (11)0.61746 (10)0.0173 (2)
H60.5852 (15)0.5636 (14)0.5904 (13)0.020 (4)*
C70.75216 (13)0.46401 (11)0.55177 (10)0.0175 (2)
H70.7668 (15)0.5059 (14)0.4788 (13)0.024 (4)*
C80.83788 (12)0.36875 (11)0.59035 (10)0.0155 (2)
C90.81720 (12)0.30898 (11)0.69557 (10)0.0161 (2)
H90.8752 (14)0.2457 (14)0.7224 (12)0.020 (4)*
C100.70992 (12)0.34407 (11)0.76131 (10)0.0159 (2)
H100.6926 (14)0.3023 (14)0.8350 (13)0.021 (4)*
C110.01442 (13)0.57371 (11)0.80405 (10)0.0178 (2)
H1110.0795 (15)0.5338 (14)0.7556 (13)0.022 (4)*
H1120.0444 (15)0.5101 (14)0.8393 (13)0.023 (4)*
H1130.0456 (15)0.6270 (15)0.7544 (14)0.026 (4)*
C120.00717 (13)0.70098 (11)0.98606 (10)0.0169 (2)
H1210.0494 (16)0.7364 (15)1.0534 (13)0.026 (4)*
H1220.0616 (15)0.7636 (14)0.9446 (13)0.021 (4)*
H1230.0673 (16)0.6388 (16)1.0133 (15)0.035 (4)*
C130.94875 (12)0.32918 (11)0.52248 (10)0.0177 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0168 (4)0.0111 (4)0.0244 (4)0.0003 (3)0.0057 (3)0.0024 (3)
O20.0132 (4)0.0139 (4)0.0169 (4)0.0027 (3)0.0012 (3)0.0015 (3)
O30.0164 (4)0.0178 (4)0.0220 (4)0.0033 (3)0.0011 (3)0.0027 (3)
O40.0244 (5)0.0191 (5)0.0321 (5)0.0004 (4)0.0096 (4)0.0083 (4)
N10.0144 (5)0.0146 (5)0.0204 (5)0.0002 (4)0.0009 (4)0.0023 (4)
N20.0151 (5)0.0149 (5)0.0179 (5)0.0004 (4)0.0031 (4)0.0005 (4)
N30.0227 (6)0.0233 (6)0.0244 (5)0.0003 (4)0.0076 (4)0.0001 (4)
C10.0135 (5)0.0111 (5)0.0182 (5)0.0005 (4)0.0010 (4)0.0024 (4)
C20.0152 (6)0.0159 (6)0.0208 (5)0.0001 (4)0.0025 (4)0.0003 (4)
C30.0143 (5)0.0140 (5)0.0184 (5)0.0005 (4)0.0017 (4)0.0006 (4)
C40.0127 (5)0.0135 (5)0.0170 (5)0.0010 (4)0.0008 (4)0.0027 (4)
C50.0119 (5)0.0143 (5)0.0182 (5)0.0024 (4)0.0014 (4)0.0037 (4)
C60.0178 (6)0.0137 (5)0.0205 (5)0.0001 (4)0.0014 (4)0.0001 (4)
C70.0196 (6)0.0155 (5)0.0178 (5)0.0026 (4)0.0039 (4)0.0004 (4)
C80.0134 (5)0.0155 (5)0.0179 (5)0.0031 (4)0.0028 (4)0.0022 (4)
C90.0137 (5)0.0160 (5)0.0185 (5)0.0003 (4)0.0001 (4)0.0002 (4)
C100.0144 (5)0.0177 (5)0.0155 (5)0.0026 (4)0.0010 (4)0.0004 (4)
C110.0174 (6)0.0170 (6)0.0188 (5)0.0019 (5)0.0009 (4)0.0015 (4)
C120.0162 (6)0.0141 (5)0.0207 (5)0.0032 (4)0.0037 (4)0.0007 (4)
C130.0178 (6)0.0167 (6)0.0188 (5)0.0029 (4)0.0024 (4)0.0006 (4)
Geometric parameters (Å, º) top
O1—C11.4435 (13)C6—C71.3878 (16)
O1—C21.3645 (13)C6—H60.954 (15)
O2—C11.4493 (13)C7—C81.3949 (17)
O2—C41.3533 (13)C7—H70.974 (15)
O3—C41.2081 (14)C8—C91.4012 (16)
O4—C21.2009 (14)C8—C131.4418 (15)
N1—N21.3082 (14)C9—C101.3854 (15)
N1—C31.3116 (14)C9—H90.936 (15)
N2—C51.4075 (14)C10—H100.986 (15)
N2—H20.922 (17)C11—C11.5117 (16)
N3—C131.1473 (15)C11—H1110.976 (15)
C1—C121.5055 (15)C11—H1130.984 (16)
C2—C31.4812 (16)C11—H1121.007 (16)
C3—C41.4718 (15)C12—H1220.975 (15)
C5—C61.3981 (16)C12—H1210.999 (16)
C5—C101.3932 (17)C12—H1230.967 (17)
C2—O1—C1118.66 (9)C7—C6—H6119.7 (9)
C4—O2—C1118.29 (8)C6—C7—C8119.80 (11)
N2—N1—C3120.47 (10)C6—C7—H7119.6 (9)
N1—N2—C5119.38 (10)C8—C7—H7120.6 (9)
N1—N2—H2119.3 (10)C7—C8—C9120.56 (10)
C5—N2—H2121.1 (10)C7—C8—C13120.76 (10)
O1—C1—O2109.71 (9)C9—C8—C13118.68 (11)
O1—C1—C11110.85 (9)C8—C9—H9120.9 (9)
O1—C1—C12106.43 (9)C10—C9—C8119.72 (11)
O2—C1—C11109.92 (9)C10—C9—H9119.4 (9)
O2—C1—C12105.40 (9)C5—C10—H10119.5 (9)
C12—C1—C11114.31 (10)C9—C10—C5119.50 (10)
O1—C2—C3114.85 (10)C9—C10—H10121.0 (9)
O4—C2—O1119.33 (11)C1—C11—H111111.6 (9)
O4—C2—C3125.66 (11)C1—C11—H113110.4 (9)
N1—C3—C2115.57 (10)C1—C11—H112108.6 (9)
N1—C3—C4124.16 (11)H111—C11—H112109.0 (12)
C4—C3—C2119.88 (10)H111—C11—H113108.9 (13)
O2—C4—C3116.02 (10)H113—C11—H112108.3 (12)
O3—C4—O2119.38 (10)C1—C12—H121108.9 (9)
O3—C4—C3124.52 (10)C1—C12—H122107.9 (8)
C6—C5—N2121.03 (11)C1—C12—H123109.4 (10)
C10—C5—N2117.89 (10)H121—C12—H123110.0 (13)
C10—C5—C6121.08 (10)H122—C12—H121110.9 (13)
C5—C6—H6120.9 (9)H122—C12—H123109.6 (13)
C7—C6—C5119.34 (11)N3—C13—C8178.56 (13)
C2—O1—C1—O251.23 (12)O4—C2—C3—N19.81 (19)
C2—O1—C1—C1170.35 (13)O4—C2—C3—C4163.35 (12)
C2—O1—C1—C12164.79 (10)N1—C3—C4—O2174.73 (10)
C1—O1—C2—O4163.20 (11)N1—C3—C4—O38.59 (19)
C1—O1—C2—C321.07 (14)C2—C3—C4—O212.73 (16)
C4—O2—C1—O150.36 (12)C2—C3—C4—O3163.95 (11)
C4—O2—C1—C12164.59 (9)N2—C5—C6—C7178.47 (10)
C4—O2—C1—C1171.77 (12)C10—C5—C6—C70.62 (18)
C1—O2—C4—O3163.46 (10)N2—C5—C10—C9178.44 (10)
C1—O2—C4—C319.68 (14)C6—C5—C10—C90.67 (18)
C3—N1—N2—C5179.24 (10)C5—C6—C7—C80.05 (18)
N2—N1—C3—C2173.80 (10)C6—C7—C8—C90.65 (18)
N2—N1—C3—C40.97 (18)C6—C7—C8—C13178.87 (11)
N1—N2—C5—C611.37 (17)C7—C8—C9—C100.60 (18)
N1—N2—C5—C10169.52 (10)C13—C8—C9—C10178.93 (11)
O1—C2—C3—N1174.77 (10)C8—C9—C10—C50.06 (17)
O1—C2—C3—C412.07 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.92 (2)1.958 (16)2.6674 (13)132 (1)
C9—H9···N1i0.94 (2)2.624 (15)3.5320 (16)164 (1)
C10—H10···N3ii0.99 (2)2.485 (15)3.3876 (16)152 (1)
C12—H123···O2iii0.97 (2)2.527 (17)3.4454 (15)159 (1)
C12—H122···Cg1iv0.98 (2)2.491 (15)3.4575 (13)171 (1)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x1/2, y+1/2, z+1/2; (iii) x, y+1, z+2; (iv) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H11N3O4
Mr273.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.7617 (2), 11.0023 (2), 11.4753 (3)
β (°) 93.796 (1)
V3)1229.76 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.46 × 0.43 × 0.29
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.950, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
11746, 3098, 2591
Rint0.029
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.04
No. of reflections3098
No. of parameters225
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.38, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.92 (2)1.958 (16)2.6674 (13)132 (1)
C9—H9···N1i0.94 (2)2.624 (15)3.5320 (16)164 (1)
C10—H10···N3ii0.99 (2)2.485 (15)3.3876 (16)152 (1)
C12—H123···O2iii0.97 (2)2.527 (17)3.4454 (15)159 (1)
C12—H122···Cg1iv0.98 (2)2.491 (15)3.4575 (13)171 (1)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x1/2, y+1/2, z+1/2; (iii) x, y+1, z+2; (iv) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationBranger, C., Lequan, M., Lequan, R. M., Large, M. & Kajzar, F. (1997). Chem. Phys. Lett. 272, 265–270.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBuchel, M., Sekkat, Z., Paul, S., Weichart, B., Menzel, H. & Knoll, W. (1995). Langmuir, 11, 4460–4466.  Google Scholar
First citationÇolak, N., Aksakal, D., Andaç, Ö. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1165–o1166.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGale, P. A., Chen, Z., Drew, M. G. B., Heath, J. A. & Beer, P. D. (1998). Polyhedron, 4, 405–412.  Web of Science CSD CrossRef Google Scholar
First citationIkeda, T. & Tsutsumi, O. (1995). Science, 268, 1873–1875.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKang, H. C., Lee, B. M., Yoon, J. & Yoon, M. (2000). J. Colloid Interface Sci. 231, 255–264.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarcı, F., Şener, İ. & Deligöz, H. (2004). Dyes Pigments, 62, 131–140.  Google Scholar
First citationKim, D. Y., Tripathy, S. K., Li, L. & Kumar, J. (1995). Appl. Phys. Lett. 66, 1166–1168.  CrossRef CAS Web of Science Google Scholar
First citationKobrakov, K. I., Glyadyaeva, O. Yu., Stankevich, G. S. & Kovtun, L. G. (2004). Fibre Chem. 36, 41–42.  Web of Science CrossRef CAS Google Scholar
First citationNatansohn, A., Rochon, P., Gosselin, J. & Xie, S. (1992). Macromolecules, 25, 2268–2273.  CrossRef CAS Web of Science Google Scholar
First citationPavlovic, G., Racane, L., Cicak, H. & Tralic-Kulenovic, V. (2009). Dyes Pigments, 83, 354–362.  Web of Science CSD CrossRef CAS Google Scholar
First citationRochon, P., Battalla, E. & Natansohn, A. (1995). Appl. Phys. Lett. 66, 136–138.  CrossRef CAS Web of Science Google Scholar
First citationSeferoğlu, Z., Ertan, N., Hökelek, T. & Şahin, E. (2008). Dyes Pigments, 77, 614–625.  Google Scholar
First citationSeferoğlu, Z., Ertan, N., Kickelbick, G. & Hökelek, T. (2009). Dyes Pigments, 82, 20–25.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWojciechowski, K. & Szymezak, A. (2007). Dyes Pigments, 75, 45–51.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1784-o1785
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds