organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1835-o1836

8-Methyl-2-[4-(tri­fluoro­meth­yl)phen­yl]-8H-pyrazolo­[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine methanol disolvate

aDepartment of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore, bDepartment of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, and cPerm State Pharmaceutical Academy, 2 Polevaya Street, Perm 614990, Russian Federation
*Correspondence e-mail: dolzhenkoav@gmail.com

(Received 22 June 2010; accepted 23 June 2010; online 26 June 2010)

In the title compound, C14H10F3N7·2CH4O, the heterocyclic ring system is essentially planar (r.m.s. deviation = 0.009 Å) and makes a dihedral angle of 6.91 (8)° with the attached benzene ring. In the crystal, the main mol­ecules form centrosymmetric R22(8) dimers via pairs of N—H⋯N hydrogen bonds between the amino groups and pyrimidine N atoms. One of the independent methanol mol­ecules and its inversion equivalent are linked to the dimers via O—H⋯N and N—H⋯O hydrogen bonds, forming R44(16) graph-set motifs. The dimers along with the hydrogen-bonded methanol mol­ecules are stacked along the a axis, with ππ inter­actions between the pyrazole and triazole rings [centroid–centroid distance = 3.4953 (10) Å].

Related literature

For reviews on pyrazolo­[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine adenosine receptor antagonists, see: Baraldi et al. (2006[Baraldi, P. G., Tabrizi, M. A., Romagnoli, R., El-Kashef, H., Preti, D., Bovero, A., Fruttarolo, F., Gordaliza, M. & Borea, P. A. (2006). Curr. Org. Chem. 10, 259-275.]); Cacciari et al. (2007[Cacciari, B., Bolcato, C., Spalluto, G., Klotz, K.-N., Bacilieri, M., Deflorian, F. & Moro, S. (2007). Purinergic Signal. 3, 183-193.]). For the general method used for the synthesis of the title compound, see: Dolzhenko et al. (2009[Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2009). Tetrahedron Lett. 50, 5617-5621.]); Cheong et al. (2010[Cheong, S. L., Dolzhenko, A., Kachler, S., Paoletta, S., Federico, S., Cacciari, B., Dolzhenko, A., Klotz, K.-N., Moro, S., Spalluto, G. & Pastorin, G. (2010). J. Med. Chem. 53, 3361-3375.]). For the crystal structures of related pyrazolo­[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines, see: Ferretti et al. (2006[Ferretti, V., Pretto, L., Tabrizi, M. A. & Gilli, P. (2006). Acta Cryst. B62, 634-641.]); Mezheritsky et al. (2004[Mezheritsky, V. V., Minkin, V. I., Minyaeva, L. G., Tyurin, R. G., Krasnikov, V. V., Vorobyev, E. V. & Starikova, Z. A. (2004). ARKIVOC, pp. 9-17.]); Tyurin et al. (2005[Tyurin, R. V., Vorob'ev, E. V., Minyaeva, L. G., Krasnikov, V. V. & Mezheritskii, V. V. (2005). Russ. J. Org. Chem. 41, 916-921.]); Xiao & Shi (2007[Xiao, L.-X. & Shi, D.-Q. (2007). Acta Cryst. E63, o3613.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10F3N7·2CH4O

  • Mr = 397.37

  • Monoclinic, P 21 /n

  • a = 4.6179 (3) Å

  • b = 17.1149 (10) Å

  • c = 22.7627 (13) Å

  • β = 94.323 (1)°

  • V = 1793.93 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 223 K

  • 0.58 × 0.32 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.932, Tmax = 0.985

  • 12385 measured reflections

  • 4076 independent reflections

  • 3538 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.145

  • S = 1.05

  • 4076 reflections

  • 266 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯N2i 0.83 2.05 2.877 (2) 175
O2S—H2S⋯N6 0.83 2.04 2.853 (2) 165
N7—H7A⋯O1S 0.85 (2) 2.46 (2) 3.050 (2) 128 (2)
N7—H7B⋯N3i 0.89 (2) 2.09 (3) 2.979 (2) 179 (2)
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine system has been recognized as an excellent template for the construction of new adenosine receptor antagonists (Baraldi et al., 2006; Cacciari et al., 2007). However, information on the structure of this heterocyclic system is limited (Ferretti et al., 2006; Mezheritsky et al., 2004; Tyurin et al., 2005; Xiao & Shi, 2007). In continuation of our works on the development of new pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine adenosine receptor antagonists (Dolzhenko et al., 2009; Cheong et al., 2010), we report here the molecular and crystal structure of 8-methyl-2-(4-trifluoromethylphenyl)-8H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine.

The compound crystallizes with two methanol solvent molecules. The heterocyclic ring system is essentially planar with an r.m.s. deviation of 0.009 Å. The phenyl ring makes a dihedral angle of 6.91 (8)° with the pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine core. The trifluoromethyl group C atom, C13, is located 0.130 (3) Å above the C7—C12 mean plane.

In the crystal, molecules of 8-methyl-2-(4-trifluoromethylphenyl)-8H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine form centrosymmetric inversion dimers (Fig. 2). The pyrimidine N3 atom is connected with amino group N7—H7B of the pair molecule by intermolecular N···H—N hydrogen bond making R22(8) graph-set motif (Bernstein et al.,1995). Methanol hydroxy group O1S—H1S also links the heterocyclic molecules in the dimer by the N—H···O—H···N hydrogen bond array with amino group N7—H7A and N2 of the pyrazole ring making R44(16) graph-set motif. Another methanol molecule forms the O—H···N hydrogen bond with N6 of the triazole ring. The dimers are stacked along the a axis, with ππ interactions between pyrazole and triazole rings [centroid-to-centroid distance = 3.4953 (10) Å] (Fig. 2).

Related literature top

For reviews on pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine adenosine receptor antagonists, see: Baraldi et al. (2006); Cacciari et al. (2007). For the general method used for the synthesis of the title compound, see: Dolzhenko et al. (2009); Cheong et al. (2010). For the crystal structures of related pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines, see: Ferretti et al. (2006); Mezheritsky et al. (2004); Tyurin et al. (2005); Xiao & Shi (2007). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

8-Methyl-2-(4-trifluoromethylphenyl)-8H-pyrazolo[4,3-e][1,2,4]triazolo][1,5-c]pyrimidin-5-amine was prepared from 8-methyl-2-(4-trifluoromethylphenyl)-8H-pyrazolo[4,3-e][1,2,4]triazolo][1,5-c]pyrimidine (Dolzhenko et al., 2009) similarly to the described method (Cheong et al., 2010). The detail procedure will be reported elsewhere. The crystals suitable for crystallographic analysis were grown by recrystallization from methanol. m.p. 573 K.

Refinement top

All C-bound H atoms were positioned geometrically and included in the refinement in riding-motion approximation [0.94 Å for CH of aromatic systems, 0.97 Å for methyl groups, and 0.83 Å for hydroxyl groups; Uiso(H) = 1.2Ueq(CAr) and Uiso(H) = 1.5Ueq(O,CMe)] while the amino group H atoms were located in a difference map and refined freely.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the a axis.
8-Methyl-2-[4-(trifluoromethyl)phenyl]-8H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine methanol disolvate top
Crystal data top
C14H10F3N7·2CH4OF(000) = 824
Mr = 397.37Dx = 1.471 Mg m3
Monoclinic, P21/nMelting point: 573 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 4.6179 (3) ÅCell parameters from 4421 reflections
b = 17.1149 (10) Åθ = 2.4–27.2°
c = 22.7627 (13) ŵ = 0.12 mm1
β = 94.323 (1)°T = 223 K
V = 1793.93 (19) Å3Block, colourless
Z = 40.58 × 0.32 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4076 independent reflections
Radiation source: fine-focus sealed tube3538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 55
Tmin = 0.932, Tmax = 0.985k = 2122
12385 measured reflectionsl = 2329
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.7421P]
where P = (Fo2 + 2Fc2)/3
4076 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H10F3N7·2CH4OV = 1793.93 (19) Å3
Mr = 397.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.6179 (3) ŵ = 0.12 mm1
b = 17.1149 (10) ÅT = 223 K
c = 22.7627 (13) Å0.58 × 0.32 × 0.12 mm
β = 94.323 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4076 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3538 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.985Rint = 0.027
12385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.35 e Å3
4076 reflectionsΔρmin = 0.21 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1S0.5063 (3)0.68580 (11)0.08136 (7)0.0581 (4)
H1S0.45070.68820.04590.087*
C1S0.8079 (5)0.68768 (18)0.08766 (13)0.0684 (7)
H1S10.87350.74150.08870.103*
H1S20.88520.66110.05460.103*
H1S30.87560.66170.12400.103*
C2S0.1594 (6)0.15803 (13)0.27649 (11)0.0581 (6)
H2S10.20280.19170.31030.087*
H2S20.17790.10380.28870.087*
H2S30.03740.16780.26020.087*
F11.4952 (3)0.39342 (8)0.43457 (6)0.0616 (4)
F21.2039 (3)0.48312 (8)0.45616 (5)0.0550 (4)
F31.5562 (3)0.50993 (9)0.40469 (6)0.0642 (4)
N10.3122 (3)0.23144 (9)0.07561 (7)0.0362 (3)
N20.2997 (3)0.29563 (9)0.04026 (7)0.0375 (4)
N30.0193 (3)0.41222 (8)0.04749 (6)0.0365 (4)
N40.3019 (3)0.41895 (8)0.13254 (6)0.0296 (3)
N50.5146 (3)0.45421 (8)0.16847 (6)0.0309 (3)
N60.3934 (3)0.33542 (8)0.20487 (6)0.0286 (3)
N70.2815 (4)0.51915 (10)0.06445 (8)0.0461 (4)
H7A0.402 (5)0.5454 (13)0.0863 (10)0.044 (6)*
H7B0.204 (5)0.5402 (14)0.0312 (11)0.052 (6)*
C10.1317 (4)0.23497 (10)0.12400 (8)0.0343 (4)
H10.10810.19710.15390.041*
C20.0145 (4)0.30557 (9)0.12153 (7)0.0301 (4)
C30.0985 (4)0.34097 (10)0.06864 (7)0.0322 (4)
C40.1813 (4)0.45034 (10)0.07964 (7)0.0336 (4)
C50.2331 (4)0.34778 (9)0.15530 (7)0.0276 (3)
C60.5597 (4)0.40191 (9)0.21105 (7)0.0269 (3)
C70.7738 (3)0.41460 (9)0.26155 (7)0.0274 (3)
C80.9154 (4)0.48630 (10)0.26875 (7)0.0326 (4)
H80.87860.52610.24070.039*
C91.1098 (4)0.49892 (10)0.31706 (8)0.0343 (4)
H91.20410.54740.32210.041*
C101.1650 (4)0.43965 (10)0.35808 (7)0.0307 (4)
C111.0299 (4)0.36786 (10)0.35067 (8)0.0343 (4)
H111.07100.32770.37820.041*
C120.8337 (4)0.35550 (10)0.30243 (8)0.0331 (4)
H120.74070.30680.29740.040*
C131.3561 (4)0.45625 (11)0.41268 (8)0.0368 (4)
C140.5043 (5)0.16731 (12)0.05670 (10)0.0464 (5)
H14A0.42410.13960.02450.070*
H14B0.69400.18790.04360.070*
H14C0.52290.13170.08940.070*
O2S0.3553 (4)0.17366 (9)0.23347 (8)0.0626 (5)
H2S0.38190.22150.23140.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1S0.0507 (9)0.0792 (12)0.0434 (8)0.0125 (8)0.0029 (7)0.0038 (8)
C1S0.0505 (14)0.0805 (18)0.0727 (17)0.0068 (12)0.0050 (12)0.0207 (14)
C2S0.0740 (16)0.0445 (12)0.0554 (13)0.0039 (11)0.0027 (12)0.0023 (10)
F10.0664 (9)0.0601 (8)0.0537 (8)0.0231 (7)0.0252 (6)0.0033 (6)
F20.0506 (7)0.0806 (9)0.0333 (6)0.0123 (6)0.0006 (5)0.0145 (6)
F30.0544 (8)0.0857 (10)0.0502 (7)0.0294 (7)0.0117 (6)0.0062 (7)
N10.0395 (8)0.0307 (8)0.0381 (8)0.0050 (6)0.0010 (6)0.0035 (6)
N20.0428 (9)0.0336 (8)0.0348 (8)0.0033 (6)0.0047 (6)0.0025 (6)
N30.0491 (9)0.0286 (7)0.0300 (7)0.0014 (6)0.0081 (6)0.0023 (6)
N40.0391 (8)0.0237 (7)0.0254 (7)0.0008 (5)0.0027 (5)0.0003 (5)
N50.0385 (8)0.0260 (7)0.0273 (7)0.0014 (6)0.0036 (6)0.0018 (5)
N60.0343 (7)0.0250 (7)0.0264 (7)0.0006 (5)0.0011 (5)0.0003 (5)
N70.0665 (12)0.0316 (8)0.0369 (9)0.0117 (8)0.0177 (8)0.0086 (7)
C10.0389 (9)0.0310 (9)0.0332 (9)0.0026 (7)0.0030 (7)0.0004 (7)
C20.0350 (9)0.0278 (8)0.0274 (8)0.0001 (6)0.0019 (6)0.0020 (6)
C30.0382 (9)0.0286 (8)0.0292 (8)0.0018 (7)0.0014 (7)0.0029 (6)
C40.0441 (10)0.0277 (8)0.0279 (8)0.0018 (7)0.0037 (7)0.0018 (6)
C50.0335 (8)0.0232 (7)0.0264 (7)0.0026 (6)0.0040 (6)0.0013 (6)
C60.0322 (8)0.0234 (7)0.0253 (7)0.0024 (6)0.0031 (6)0.0008 (6)
C70.0295 (8)0.0277 (8)0.0252 (7)0.0032 (6)0.0029 (6)0.0008 (6)
C80.0402 (9)0.0272 (8)0.0299 (8)0.0004 (7)0.0010 (7)0.0052 (6)
C90.0374 (9)0.0300 (8)0.0349 (9)0.0041 (7)0.0011 (7)0.0002 (7)
C100.0281 (8)0.0361 (9)0.0279 (8)0.0051 (7)0.0022 (6)0.0005 (7)
C110.0398 (9)0.0312 (9)0.0314 (8)0.0042 (7)0.0016 (7)0.0068 (7)
C120.0394 (9)0.0252 (8)0.0344 (9)0.0010 (7)0.0000 (7)0.0021 (6)
C130.0350 (9)0.0426 (10)0.0323 (9)0.0037 (7)0.0002 (7)0.0005 (7)
C140.0476 (11)0.0386 (10)0.0526 (12)0.0119 (9)0.0009 (9)0.0091 (8)
O2S0.0839 (12)0.0294 (7)0.0764 (11)0.0002 (8)0.0186 (9)0.0034 (7)
Geometric parameters (Å, º) top
O1S—C1S1.390 (3)N7—C41.321 (2)
O1S—H1S0.83N7—H7A0.85 (2)
C1S—H1S10.97N7—H7B0.89 (2)
C1S—H1S20.97C1—C21.387 (2)
C1S—H1S30.97C1—H10.94
C2S—O2S1.408 (3)C2—C31.412 (2)
C2S—H2S10.97C2—C51.419 (2)
C2S—H2S20.97C6—C71.475 (2)
C2S—H2S30.97C7—C121.388 (2)
F1—C131.330 (2)C7—C81.394 (2)
F2—C131.338 (2)C8—C91.383 (2)
F3—C131.325 (2)C8—H80.94
N1—C11.331 (2)C9—C101.389 (2)
N1—N21.366 (2)C9—H90.94
N1—C141.456 (2)C10—C111.382 (3)
N2—C31.339 (2)C10—C131.496 (2)
N3—C41.310 (2)C11—C121.386 (2)
N3—C31.371 (2)C11—H110.94
N4—N51.3698 (19)C12—H120.94
N4—C51.370 (2)C14—H14A0.97
N4—C41.396 (2)C14—H14B0.97
N5—C61.324 (2)C14—H14C0.97
N6—C51.319 (2)O2S—H2S0.83
N6—C61.374 (2)
C1S—O1S—H1S109.5N6—C5—N4109.56 (14)
O1S—C1S—H1S1109.5N6—C5—C2135.39 (15)
O1S—C1S—H1S2109.5N4—C5—C2115.05 (14)
H1S1—C1S—H1S2109.5N5—C6—N6115.41 (14)
O1S—C1S—H1S3109.5N5—C6—C7122.01 (14)
H1S1—C1S—H1S3109.5N6—C6—C7122.58 (14)
H1S2—C1S—H1S3109.5C12—C7—C8119.65 (15)
O2S—C2S—H2S1109.5C12—C7—C6120.21 (15)
O2S—C2S—H2S2109.5C8—C7—C6120.14 (14)
H2S1—C2S—H2S2109.5C9—C8—C7120.09 (15)
O2S—C2S—H2S3109.5C9—C8—H8120.0
H2S1—C2S—H2S3109.5C7—C8—H8120.0
H2S2—C2S—H2S3109.5C8—C9—C10119.71 (16)
C1—N1—N2113.54 (14)C8—C9—H9120.1
C1—N1—C14127.47 (16)C10—C9—H9120.1
N2—N1—C14118.95 (15)C11—C10—C9120.58 (16)
C3—N2—N1103.90 (14)C11—C10—C13120.16 (16)
C4—N3—C3116.28 (14)C9—C10—C13119.11 (16)
N5—N4—C5110.01 (13)C10—C11—C12119.62 (15)
N5—N4—C4124.55 (14)C10—C11—H11120.2
C5—N4—C4125.41 (14)C12—C11—H11120.2
C6—N5—N4101.84 (13)C11—C12—C7120.34 (16)
C5—N6—C6103.18 (13)C11—C12—H12119.8
C4—N7—H7A123.1 (15)C7—C12—H12119.8
C4—N7—H7B117.2 (15)F3—C13—F1106.84 (16)
H7A—N7—H7B119 (2)F3—C13—F2105.89 (16)
N1—C1—C2106.40 (15)F1—C13—F2105.45 (15)
N1—C1—H1126.8F3—C13—C10113.04 (15)
C2—C1—H1126.8F1—C13—C10113.31 (15)
C1—C2—C3104.97 (15)F2—C13—C10111.71 (14)
C1—C2—C5138.58 (16)N1—C14—H14A109.5
C3—C2—C5116.45 (15)N1—C14—H14B109.5
N2—C3—N3122.67 (15)H14A—C14—H14B109.5
N2—C3—C2111.18 (15)N1—C14—H14C109.5
N3—C3—C2126.15 (15)H14A—C14—H14C109.5
N3—C4—N7122.99 (16)H14B—C14—H14C109.5
N3—C4—N4120.64 (15)C2S—O2S—H2S109.5
N7—C4—N4116.37 (16)
C1—N1—N2—C30.3 (2)C1—C2—C5—N60.6 (4)
C14—N1—N2—C3177.53 (16)C3—C2—C5—N6178.44 (18)
C5—N4—N5—C60.34 (17)C1—C2—C5—N4179.5 (2)
C4—N4—N5—C6178.42 (15)C3—C2—C5—N41.4 (2)
N2—N1—C1—C20.4 (2)N4—N5—C6—N60.51 (18)
C14—N1—C1—C2177.22 (17)N4—N5—C6—C7179.41 (14)
N1—C1—C2—C30.29 (19)C5—N6—C6—N50.49 (19)
N1—C1—C2—C5178.9 (2)C5—N6—C6—C7179.44 (14)
N1—N2—C3—N3179.97 (16)N5—C6—C7—C12174.11 (16)
N1—N2—C3—C20.1 (2)N6—C6—C7—C126.0 (2)
C4—N3—C3—N2179.75 (17)N5—C6—C7—C86.4 (2)
C4—N3—C3—C20.3 (3)N6—C6—C7—C8173.47 (15)
C1—C2—C3—N20.1 (2)C12—C7—C8—C91.4 (3)
C5—C2—C3—N2179.25 (15)C6—C7—C8—C9178.09 (16)
C1—C2—C3—N3179.81 (17)C7—C8—C9—C100.5 (3)
C5—C2—C3—N30.8 (3)C8—C9—C10—C110.8 (3)
C3—N3—C4—N7179.18 (18)C8—C9—C10—C13174.85 (16)
C3—N3—C4—N40.5 (3)C9—C10—C11—C121.2 (3)
N5—N4—C4—N3179.14 (16)C13—C10—C11—C12174.37 (16)
C5—N4—C4—N31.3 (3)C10—C11—C12—C70.4 (3)
N5—N4—C4—N70.6 (3)C8—C7—C12—C110.9 (3)
C5—N4—C4—N7178.36 (17)C6—C7—C12—C11178.53 (16)
C6—N6—C5—N40.23 (17)C11—C10—C13—F3154.07 (17)
C6—N6—C5—C2179.89 (18)C9—C10—C13—F330.3 (2)
N5—N4—C5—N60.06 (19)C11—C10—C13—F132.3 (2)
C4—N4—C5—N6178.13 (15)C9—C10—C13—F1152.04 (17)
N5—N4—C5—C2179.84 (14)C11—C10—C13—F286.6 (2)
C4—N4—C5—C21.8 (2)C9—C10—C13—F289.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···N2i0.832.052.877 (2)175
O2S—H2S···N60.832.042.853 (2)165
N7—H7A···O1S0.85 (2)2.46 (2)3.050 (2)128 (2)
N7—H7B···N3i0.89 (2)2.09 (3)2.979 (2)179 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H10F3N7·2CH4O
Mr397.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)4.6179 (3), 17.1149 (10), 22.7627 (13)
β (°) 94.323 (1)
V3)1793.93 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.58 × 0.32 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.932, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
12385, 4076, 3538
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.145, 1.05
No. of reflections4076
No. of parameters266
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···N2i0.832.052.877 (2)175
O2S—H2S···N60.832.042.853 (2)165
N7—H7A···O1S0.85 (2)2.46 (2)3.050 (2)128 (2)
N7—H7B···N3i0.89 (2)2.09 (3)2.979 (2)179 (2)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the National Medical Research Council, Singapore (grant No. NMRC/NIG/0020/2008).

References

First citationBaraldi, P. G., Tabrizi, M. A., Romagnoli, R., El-Kashef, H., Preti, D., Bovero, A., Fruttarolo, F., Gordaliza, M. & Borea, P. A. (2006). Curr. Org. Chem. 10, 259–275.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationCacciari, B., Bolcato, C., Spalluto, G., Klotz, K.-N., Bacilieri, M., Deflorian, F. & Moro, S. (2007). Purinergic Signal. 3, 183–193.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCheong, S. L., Dolzhenko, A., Kachler, S., Paoletta, S., Federico, S., Cacciari, B., Dolzhenko, A., Klotz, K.-N., Moro, S., Spalluto, G. & Pastorin, G. (2010). J. Med. Chem. 53, 3361–3375.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2009). Tetrahedron Lett. 50, 5617–5621.  Web of Science CrossRef CAS Google Scholar
First citationFerretti, V., Pretto, L., Tabrizi, M. A. & Gilli, P. (2006). Acta Cryst. B62, 634–641.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMezheritsky, V. V., Minkin, V. I., Minyaeva, L. G., Tyurin, R. G., Krasnikov, V. V., Vorobyev, E. V. & Starikova, Z. A. (2004). ARKIVOC, pp. 9–17.  CrossRef Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTyurin, R. V., Vorob'ev, E. V., Minyaeva, L. G., Krasnikov, V. V. & Mezheritskii, V. V. (2005). Russ. J. Org. Chem. 41, 916–921.  Web of Science CrossRef CAS Google Scholar
First citationXiao, L.-X. & Shi, D.-Q. (2007). Acta Cryst. E63, o3613.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1835-o1836
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds