supplementary materials


dn2579 scheme

Acta Cryst. (2010). E66, o1767    [ doi:10.1107/S1600536810023640 ]

3-Methyl-1-(prop-2-en-1-yl)quinoxalin-2(1H)-one

Y. Ramli, R. Slimani, H. Zouihri, S. Lazar and E. M. Essassi

Abstract top

In the molecule of the title compound, C12H12N2O, the quinoxaline ring is planar with an r.m.s. deviation of 0.007 (15) Å. The dihedral angle between the quinoxaline and propenyl planes is 82.1 (2)°. The crystal packing is stabilized by offset [pi]-[pi] stacking between the quinoxaline rings [centroid-centroid distance = 3.8832 (9) Å].

Comment top

Quinoxaline derivatives are a very important class of nitrogen-containing compounds and have been widely used in dyes, pharmaceuticals and electrical/photochemical materials. Quinoxaline ring moiety constitute part of the chemical structures of various antibiotics such as Echinomycin, Levomycin and Actinoleutin that are known to inhibit growth of gram positive bacteria and are active against various transplantable tumors.

Quinoxaline derivatives were found to exhibit antimicrobial [Kleim et al. 1995], antitumor [Abasolo et al. 1987], and antituberculous activity [Rodrigo et al.2002]. They, also, exhibit interesting antifungal, herbicidal, Antidyslipidemic and antioxidative activities of quinoxaline derivatives, see: (Jampilek et al. 2005, Sashidhara et al. 2009, Watkins et al. 2009).

The dihedral angle between the quinoxaline and propenyl planes is 82.1 (2) (Fig. 1). Bond lengths and angles in title molecule are normal (Allen et al., 1987). The crystal packing is stabilized by offset π-π stacking between the quinoxalin rings.

Related literature top

For biological activity of quinoxaline derivatives, see: Kleim et al. (1995). For their antitumor, and antituberculous properties, see: Abasolo et al. (1987); Rodrigo et al. (2002). For the antifungal, herbicidal, antidyslipidemic and anti-oxidative activities of quinoxaline derivatives, see: Jampilek et al. (2005); Sashidhara et al. (2009); Watkins et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of 3-methylquinoxali-2(1H)-one (1 g) in 20 ml of dimethylformamide was added allylchloride (0.85 ml),K2CO3 (0.95 g) and catalytic amont of tetrabutylammonium bromide.The mixture was stirred at room temperature for 24 h.Then the solvent was remdove under reduce pressure,the residue was cristallized in ethanol to afford the product.

Refinement top

Although found in a difference map, H atoms were introduced in calculated positions and treated as riding with C—H = 0.96 Å for methyl groups, C—H = 0.93 Å for aromatic and C—H = 0.97 Å for methine with U iso (H) = 1.2Ueq (aromatic, methine ) or U iso (H) = 1.5Ueq (methyl).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Packing view of the crystal structure of the title compound.
3-Methyl-1-(prop-2-en-1-yl)quinoxalin-2(1H)-one top
Crystal data top
C12H12N2OF(000) = 424
Mr = 200.24Dx = 1.298 Mg m3
Monoclinic, P21/cMelting point: 1486 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.0722 (5) ÅCell parameters from 2764 reflections
b = 13.4707 (13) Åθ = 2.4–27.4°
c = 15.0507 (13) ŵ = 0.09 mm1
β = 95.082 (5)°T = 296 K
V = 1024.31 (17) Å3Block, colourless
Z = 40.32 × 0.31 × 0.13 mm
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
1726 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
graphiteθmax = 28.3°, θmin = 2.7°
φ and ω scansh = 66
11850 measured reflectionsk = 017
2546 independent reflectionsl = 020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.0888P]
where P = (Fo2 + 2Fc2)/3
2546 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H12N2OV = 1024.31 (17) Å3
Mr = 200.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0722 (5) ŵ = 0.09 mm1
b = 13.4707 (13) ÅT = 296 K
c = 15.0507 (13) Å0.32 × 0.31 × 0.13 mm
β = 95.082 (5)°
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
1726 reflections with I > 2σ(I)
11850 measured reflectionsRint = 0.049
2546 independent reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.151Δρmax = 0.23 e Å3
S = 1.08Δρmin = 0.17 e Å3
2546 reflectionsAbsolute structure: ?
137 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. The data collection nominally covered a sphere of reciprocal space, by a combination of seven sets of exposures; each set had a different φ angle for the crystal and each exposure covered 0.5° in ω and 30 s in time. The crystal-to-detector distance was 37.5 mm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimatedusing the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL datawill be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3390 (2)0.34712 (9)0.06022 (9)0.0657 (4)
N10.0193 (2)0.29591 (9)0.16502 (8)0.0408 (3)
N20.1311 (2)0.49458 (9)0.18738 (8)0.0445 (3)
C10.2649 (3)0.41959 (11)0.23590 (9)0.0408 (3)
C20.4769 (3)0.44552 (13)0.29645 (10)0.0514 (4)
H20.52530.51190.30300.062*
C30.6150 (3)0.37488 (15)0.34638 (11)0.0589 (5)
H30.75600.39310.38680.071*
C40.5434 (3)0.27599 (15)0.33625 (11)0.0579 (5)
H40.63640.22780.37040.069*
C50.3375 (3)0.24845 (13)0.27651 (11)0.0503 (4)
H50.29320.18170.26980.060*
C60.1937 (3)0.31975 (11)0.22568 (9)0.0395 (3)
C70.1541 (3)0.36731 (11)0.11482 (10)0.0441 (4)
C80.0643 (3)0.47053 (11)0.13088 (9)0.0424 (4)
C90.2158 (3)0.54800 (12)0.07845 (11)0.0543 (4)
H9A0.38780.55480.09970.081*
H9B0.23430.52930.01670.081*
H9C0.12330.61010.08500.081*
C100.1160 (3)0.19385 (11)0.15522 (11)0.0483 (4)
H10A0.30320.19560.13550.058*
H10B0.09750.16210.21330.058*
C110.0207 (3)0.13211 (13)0.09201 (12)0.0578 (5)
H110.02430.06520.08960.069*
C120.1942 (4)0.16040 (15)0.04015 (13)0.0669 (5)
H12A0.24670.22650.03980.080*
H12B0.26720.11470.00300.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0682 (8)0.0524 (8)0.0700 (8)0.0060 (6)0.0296 (7)0.0027 (6)
N10.0443 (6)0.0358 (7)0.0413 (6)0.0016 (5)0.0024 (5)0.0006 (5)
N20.0518 (7)0.0402 (7)0.0407 (6)0.0005 (5)0.0013 (5)0.0018 (5)
C10.0435 (7)0.0433 (9)0.0353 (7)0.0004 (6)0.0020 (6)0.0008 (6)
C20.0527 (9)0.0550 (10)0.0452 (8)0.0061 (7)0.0038 (7)0.0033 (7)
C30.0527 (9)0.0755 (13)0.0458 (9)0.0016 (8)0.0107 (7)0.0006 (8)
C40.0592 (10)0.0648 (12)0.0474 (9)0.0098 (8)0.0080 (7)0.0103 (8)
C50.0568 (9)0.0471 (9)0.0460 (8)0.0046 (7)0.0014 (7)0.0053 (7)
C60.0416 (7)0.0415 (9)0.0352 (7)0.0006 (6)0.0026 (6)0.0005 (6)
C70.0464 (8)0.0423 (9)0.0420 (8)0.0003 (6)0.0045 (6)0.0002 (6)
C80.0487 (8)0.0398 (8)0.0380 (7)0.0027 (6)0.0003 (6)0.0005 (6)
C90.0653 (10)0.0439 (9)0.0518 (9)0.0069 (7)0.0059 (8)0.0015 (7)
C100.0488 (8)0.0387 (9)0.0560 (9)0.0052 (6)0.0032 (7)0.0022 (7)
C110.0625 (10)0.0455 (10)0.0633 (10)0.0042 (8)0.0060 (9)0.0077 (8)
C120.0696 (11)0.0701 (13)0.0602 (11)0.0030 (9)0.0008 (9)0.0162 (9)
Geometric parameters (Å, °) top
O1—C71.2215 (18)C5—C61.393 (2)
N1—C71.3683 (19)C5—H50.9300
N1—C61.3889 (18)C7—C81.476 (2)
N1—C101.4629 (19)C8—C91.482 (2)
N2—C81.2887 (18)C9—H9A0.9600
N2—C11.3881 (19)C9—H9B0.9600
C1—C21.391 (2)C9—H9C0.9600
C1—C61.397 (2)C10—C111.481 (2)
C2—C31.367 (2)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—C41.386 (3)C11—C121.285 (3)
C3—H30.9300C11—H110.9300
C4—C51.368 (2)C12—H12A0.9300
C4—H40.9300C12—H12B0.9300
C7—N1—C6121.48 (13)O1—C7—C8121.81 (14)
C7—N1—C10117.26 (12)N1—C7—C8116.08 (13)
C6—N1—C10121.20 (12)N2—C8—C7123.57 (13)
C8—N2—C1118.41 (13)N2—C8—C9120.44 (14)
N2—C1—C2118.39 (14)C7—C8—C9115.99 (13)
N2—C1—C6122.20 (13)C8—C9—H9A109.5
C2—C1—C6119.41 (14)C8—C9—H9B109.5
C3—C2—C1120.95 (16)H9A—C9—H9B109.5
C3—C2—H2119.5C8—C9—H9C109.5
C1—C2—H2119.5H9A—C9—H9C109.5
C2—C3—C4119.49 (15)H9B—C9—H9C109.5
C2—C3—H3120.3N1—C10—C11114.87 (13)
C4—C3—H3120.3N1—C10—H10A108.6
C5—C4—C3120.70 (16)C11—C10—H10A108.6
C5—C4—H4119.7N1—C10—H10B108.6
C3—C4—H4119.7C11—C10—H10B108.6
C4—C5—C6120.41 (16)H10A—C10—H10B107.5
C4—C5—H5119.8C12—C11—C10127.48 (17)
C6—C5—H5119.8C12—C11—H11116.3
N1—C6—C5122.71 (14)C10—C11—H11116.3
N1—C6—C1118.25 (13)C11—C12—H12A120.0
C5—C6—C1119.04 (14)C11—C12—H12B120.0
O1—C7—N1122.11 (14)H12A—C12—H12B120.0
C12—C11—C10—N16.7 (3)
Table 1
Offset ππ stacking between the quinoxaline rings.
top
Cg1 is the centroid of ring N1,C6,C1,N2,C8,C7 and Cg2 the centroid of ring C1–C6.
Centroid-to-centroid(Å)plane-to-plane(Å)offset(°)
Cg1–Cg2i3.8832 (9)3.50925.4
Symmetry code: (i) -1+x, y, z.
Acknowledgements top

The authors thank the CNRST of Morocco for making this work possible.

references
References top

Abasolo, M. I., Gaozza, C. H. & Fernandez, B. M. J. (1987). Heterocycl. Chem. 24, 1771–1775.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Jampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem. 1, 591–599.

Kleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). Antimicrob. Agents Chemother. 39, 2253–2257.

Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137–143.

Sashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem. 44, 1813–1818.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Watkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem. 41, 580–585.

Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.