organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Decan­amido­eth­yl)di­methyl­amine N-oxide

aFaculty of Chemistry, Wrocław University, ul. Joliot-Curie 14, 50-383 Wrocław, Poland
*Correspondence e-mail: lewinska@eto.wchuwr.pl

(Received 20 May 2010; accepted 10 June 2010; online 23 June 2010)

In the title compound, C14H30N2O2, the almost planar nonyl chains are fully extended: the N—C—C—N torsion angle of −161.95 (8)° indicates an anti conformation. The crystal structure features N—H⋯O hydrogen bonds and C—H⋯O inter­actions.

Related literature

For the bond lengths and angles of nonyl chains, see: Low et al. (1999[Low, J. N., Cook, A., Imrie, C. T. & Wardell, J. L. (1999). Acta Cryst. C55, IUC9900123,1999]); Kato & Ikemori (2003[Kato, M. & Ikemori, M. (2003). Acta Cryst. C59, m25-m26.]); Ulrich et al. (1990[Ulrich, G., Klaska, K. H., Jarchow, O. H., Schmalle, H. W., König, W. A., Heitsch, H., Rathmann, R., Hausen, B. M. & Schulz, K.-H. (1990). Acta Cryst. C46, 1715-1718.]). For related structures containing the amide group, see: Belicchi-Ferrari et al. (2007[Belicchi-Ferrari, M., Bisceglie, F., Pelosi, G., Pinelli, S. & Tarasconi, P. (2007). Polyhedron, 26, 5150-5161.]); Jeffrey & Maluszynska (1989[Jeffrey, G. A. & Maluszynska, H. (1989). Acta Cryst. B45, 447-452.]). For N—O bond lengths, see: Katrusiak et al. (1987[Katrusiak, A., Ratajczak-Sitarz, M. & Kałuski, Z. (1987). Acta Cryst. C43, 2386-2389.]); Kemmitt et al. (2002[Kemmitt, T., Gainsford, G. J., Steel, P. J. & Wikaira, J. (2002). Acta Cryst. E58, o851-o852.]); Maia et al. (1984[Maia, E. R., Peguy, A. & Perez, S. (1984). Can. J. Chem. 62, 6-10.]); Boese et al. (1999[Boese, R., Blaeser, D. & Weiss, H.-C. (1999). Angew. Chem. Int. Ed. 38, 988-992.]); Palatinus & Damay (2009[Palatinus, L. & Damay, F. (2009). Acta Cryst. B65, 784-786.]). For a related structure, see: Sauer et al. (2003[Sauer, J. D., Elnagar, H. Y. & Fronczek, F. R. (2003). Acta Cryst. C59, o62-o64.]). For the synthesis, see: Piłakowska-Pietras et al. (2008[Piłakowska-Pietras, A., Baran, D., Krasowska, A. & Piasecki, A. (2008). J. Surfact. Deterg. 11 187-194]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Rospenk et al. (1989[Rospenk, M., Koll, A., Glowiak, T. & Sobczyk, L. (1989). J. Mol. Struct. 195, 33-38.]).

[Scheme 1]

Experimental

Crystal data
  • C14H30N2O2

  • Mr = 258.40

  • Triclinic, [P \overline 1]

  • a = 5.378 (2) Å

  • b = 8.113 (4) Å

  • c = 17.801 (5) Å

  • α = 79.55 (4)°

  • β = 86.38 (3)°

  • γ = 86.36 (4)°

  • V = 761.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.23 × 0.19 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • 10305 measured reflections

  • 3149 independent reflections

  • 2746 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.094

  • S = 1.06

  • 3149 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.87 (2) 1.89 (2) 2.753 (2) 168.9 (2)
C1—H1A⋯O2ii 0.99 2.48 3.453 (2) 166
C1—H1B⋯O2iii 0.99 2.47 3.363 (2) 150
C4—H4A⋯O1i 0.99 2.32 3.204 (2) 148
C13—H13C⋯O2iii 0.98 2.58 3.438 (2) 146
C14—H14B⋯O2iii 0.98 2.60 3.449 (2) 145
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Surfactants are amphiphilic molecules composed by at least two parts, one of them is polar or hydrophilic and the other one nonpolar or hydrophobic. A special group of surface active amine oxides are amidoamine oxides based on fatty monocarboxylic acids and diamines, particularly N,N-dimethylethylenediamine and N,N-dimethyl-1,3-propanediamine. These surfactants are typically employed in hair and body care, cleaning and shampoo formulations as foaming agents, wetting agents, thickeners and conditioners They are low or nontoxic to humans and higherorganisms but at the same time exhibit an antimicrobial activity.

The crystal and molecular structure of typical N-oxide derivatives were previously determined for 17-oxosparteine N(l)-oxide hydrochloride (A. Katrusiak, et al.) and 4-methylpyridine-N-oxide (L.Palatinus et al.). The crystal and molecular structure recognized for N-oxide surfactant, N,N-dimethyl-n-tetradecylamine oxide (Fronczek et al. ), in some degree is similar to the structure of our compound. In general, N-oxide derivatives and especially N-oxide surfactants are known as very difficult for crystallization, so the crystal structure solution for 2-(decanoylamino)ethyldimethylamine-N-oxide presented in this report is a very rare case.

The title compound consists of a hydrophobic alkyl chain and a lipophilic moiety represented by amide and N-oxide groups bridged by ethyl group (Figure 1). The planar nine carbon side adopt fully extended conformations and is twisted 45.6 (1)° from the plane of adjacent amide moiety. The torsion angle N1—C1—C2—N2 of -161.95 (8)° shows that this part takes an antiperiplanar conformation. The bond lengths and angles of nonyl chain Low et al. (1999) and amide group Belicchi-Ferrari et al. (2007) are within the normal ranges and comparable to the previously reported structures. The N—O bond length of is slightly shorter than the corresponding distances in tertiary acyclic amine oxides Boese et al. (1999).

The crystal structures is composed of the alternated hydrophilic and hydrophobic layers (Figure 1). The components in the hydrophilic parts are linked to each other via N—H···O bonds of R2,2(10) ring motifs Ulrich et al. (1990) and the weak C—H···O interactions (Table 2), whereas in the hydrophobic regions they interact through van der Waals contacts.

Related literature top

For the bond lengths and angles of nonyl chains, see: Low et al. (1999). For [details of the geometry of?] the amide group, see: Belicchi-Ferrari et al. (2007). For N—O bond lengths, see: Katrusiak et al. (1987); Boese et al. (1999); Palatinus & Damay (2009). For a related structure, see: Sauer et al. (2003).

For related literature, see: Bernstein et al. (1995); Jeffrey & Maluszynska (1989); Kato & Ikemori (2003); Kemmitt et al. (2002); Maia et al. (1984); Piłakowska-Pietras, Baran, Krasowska & Piasecki (2008); Rospenk et al. (1989); Ulrich et al. (1990).

Experimental top

A title compound was synthesized according to method given by Piłakowska-Pietras et al. (2008) The surfactant was carefully purificated several times. Suitable single crystalwere obtained by slow evaporation of thecompoundsolutionin a chloroform–hexane mixture and kept cold at -5¯C. The crystals of 2-(decanoylamino)ethyldimethylamine-N-oxides appeared unexpectedly taking into account well known problems with the surfactants crystallization.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.98–0.99 Å. The Uiso values were constrained to be -1.5Uequ (methyl H atoms) and -1.2Uequ (other H atoms). The rotating model group was considered for the methyl group. In the case of N1, the hydrogen atom was located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Table 1. Selected geometric parameters (Å, °).
[Figure 2] Fig. 2. Table 2. Hydrogen bond parameters (Å, °).
(2-Decanamidoethyl)dimethylamine N-oxide top
Crystal data top
C14H30N2O2Z = 2
Mr = 258.40F(000) = 288
Triclinic, P1Dx = 1.127 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.378 (2) ÅCell parameters from 9030 reflections
b = 8.113 (4) Åθ = 3–36°
c = 17.801 (5) ŵ = 0.08 mm1
α = 79.55 (4)°T = 100 K
β = 86.38 (3)°Block, colorless
γ = 86.36 (4)°0.23 × 0.19 × 0.08 mm
V = 761.2 (5) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire2 (large Be window)
diffractometer
2746 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 26.5°, θmin = 3.0°
ω scansh = 66
10305 measured reflectionsk = 810
3149 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.1328P]
where P = (Fo2 + 2Fc2)/3
3149 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C14H30N2O2γ = 86.36 (4)°
Mr = 258.40V = 761.2 (5) Å3
Triclinic, P1Z = 2
a = 5.378 (2) ÅMo Kα radiation
b = 8.113 (4) ŵ = 0.08 mm1
c = 17.801 (5) ÅT = 100 K
α = 79.55 (4)°0.23 × 0.19 × 0.08 mm
β = 86.38 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2 (large Be window)
diffractometer
2746 reflections with I > 2σ(I)
10305 measured reflectionsRint = 0.018
3149 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.33 e Å3
3149 reflectionsΔρmin = 0.16 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14655 (12)0.29531 (8)0.63607 (4)0.01841 (17)
O20.61547 (12)0.19768 (8)0.42458 (4)0.01908 (17)
N10.00050 (14)0.15787 (9)0.61997 (4)0.01399 (18)
N20.31670 (14)0.39834 (10)0.44253 (4)0.01548 (18)
C10.11161 (17)0.19110 (11)0.53929 (5)0.0149 (2)
H1A0.02450.21330.50330.018*
H1B0.21020.08950.52910.018*
C20.27914 (17)0.33925 (11)0.52434 (5)0.01533 (19)
H2A0.20150.43130.54900.018*
H2B0.44220.30470.54680.018*
C30.48478 (16)0.32380 (11)0.39906 (5)0.01460 (19)
C40.49927 (17)0.40400 (12)0.31534 (5)0.0169 (2)
H4A0.40900.51540.30940.020*
H4B0.41290.33400.28610.020*
C50.76504 (17)0.42604 (12)0.28085 (5)0.0175 (2)
H5A0.85870.48570.31280.021*
H5B0.85040.31440.28050.021*
C60.76453 (18)0.52507 (12)0.19949 (5)0.0187 (2)
H6A0.66950.63350.20000.022*
H6B0.67650.46200.16750.022*
C71.02383 (18)0.55974 (13)0.16275 (6)0.0210 (2)
H7A1.11890.45150.16170.025*
H7B1.11250.62270.19460.025*
C81.01841 (18)0.65973 (13)0.08150 (5)0.0217 (2)
H8A0.93210.59570.04960.026*
H8B0.92020.76680.08250.026*
C91.27600 (19)0.69820 (13)0.04450 (6)0.0218 (2)
H9A1.36070.76430.07590.026*
H9B1.37530.59110.04460.026*
C101.27329 (19)0.79467 (13)0.03721 (6)0.0218 (2)
H10A1.17360.90170.03770.026*
H10B1.19070.72840.06900.026*
C111.5337 (2)0.83259 (13)0.07251 (6)0.0246 (2)
H11A1.61540.89980.04090.030*
H11B1.63380.72560.07140.030*
C121.5335 (2)0.92734 (15)0.15446 (6)0.0327 (3)
H12A1.70550.94780.17380.049*
H12B1.43831.03480.15590.049*
H12C1.45660.86050.18650.049*
C130.19656 (17)0.11555 (12)0.67652 (5)0.0181 (2)
H13A0.11860.09640.72840.027*
H13B0.30770.20870.67090.027*
H13C0.29310.01380.66750.027*
C140.15989 (17)0.01185 (11)0.62702 (5)0.0180 (2)
H14A0.24010.01030.67860.027*
H14B0.05650.08720.61790.027*
H14C0.28810.03690.58920.027*
H20.246 (2)0.4950 (17)0.4221 (7)0.027 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0201 (3)0.0152 (3)0.0181 (3)0.0071 (3)0.0033 (3)0.0022 (3)
O20.0176 (3)0.0169 (3)0.0207 (4)0.0037 (3)0.0009 (3)0.0003 (3)
N10.0136 (4)0.0137 (4)0.0135 (4)0.0021 (3)0.0010 (3)0.0008 (3)
N20.0151 (4)0.0140 (4)0.0154 (4)0.0010 (3)0.0015 (3)0.0013 (3)
C10.0156 (4)0.0163 (4)0.0119 (4)0.0004 (3)0.0012 (3)0.0013 (3)
C20.0149 (4)0.0163 (4)0.0139 (4)0.0006 (3)0.0010 (3)0.0007 (3)
C30.0124 (4)0.0136 (4)0.0174 (4)0.0024 (3)0.0002 (3)0.0017 (3)
C40.0153 (4)0.0182 (5)0.0160 (5)0.0009 (3)0.0010 (3)0.0015 (3)
C50.0158 (4)0.0186 (5)0.0163 (5)0.0011 (3)0.0026 (3)0.0002 (4)
C60.0180 (5)0.0206 (5)0.0159 (5)0.0002 (4)0.0019 (4)0.0005 (4)
C70.0189 (5)0.0248 (5)0.0170 (5)0.0003 (4)0.0024 (4)0.0012 (4)
C80.0209 (5)0.0260 (5)0.0161 (5)0.0018 (4)0.0018 (4)0.0013 (4)
C90.0217 (5)0.0244 (5)0.0171 (5)0.0020 (4)0.0021 (4)0.0012 (4)
C100.0239 (5)0.0236 (5)0.0165 (5)0.0029 (4)0.0015 (4)0.0001 (4)
C110.0267 (5)0.0266 (5)0.0183 (5)0.0032 (4)0.0038 (4)0.0007 (4)
C120.0408 (7)0.0354 (6)0.0193 (5)0.0086 (5)0.0057 (5)0.0016 (4)
C130.0177 (4)0.0208 (5)0.0145 (4)0.0018 (4)0.0030 (3)0.0001 (4)
C140.0157 (4)0.0168 (5)0.0201 (5)0.0021 (3)0.0027 (4)0.0008 (4)
Geometric parameters (Å, º) top
O1—N11.385 (2)C5—H5A0.9900
O2—C31.237 (2)C5—H5B0.9900
N1—C11.506 (2)C6—H6A0.9900
N1—C131.489 (2)C6—H6B0.9900
N1—C141.489 (2)C7—H7A0.9900
N2—C21.454 (2)C7—H7B0.9900
N2—C31.340 (2)C8—H8A0.9900
N2—H20.87 (2)C8—H8B0.9900
C1—C21.523 (2)C9—H9A0.9900
C3—C41.514 (2)C9—H9B0.9900
C4—C51.528 (2)C10—H10A0.9900
C5—C61.523 (2)C10—H10B0.9900
C6—C71.524 (2)C11—H11A0.9900
C7—C81.525 (2)C11—H11B0.9900
C8—C91.522 (2)C12—H12A0.9800
C9—C101.522 (2)C12—H12B0.9800
C10—C111.524 (2)C12—H12C0.9800
C11—C121.520 (2)C13—H13A0.9800
C1—H1A0.9900C13—H13B0.9800
C1—H1B0.9900C13—H13C0.9800
C2—H2A0.9900C14—H14A0.9800
C2—H2B0.9900C14—H14B0.9800
C4—H4A0.9900C14—H14C0.9800
C4—H4B0.9900
O1—N1—C1111.04 (7)C7—C6—H6B109.00
O1—N1—C13109.25 (7)H6A—C6—H6B108.00
O1—N1—C14108.99 (7)C6—C7—H7A109.00
C1—N1—C13111.29 (7)C6—C7—H7B109.00
C1—N1—C14107.63 (7)C8—C7—H7A109.00
C13—N1—C14108.58 (8)C8—C7—H7B109.00
C2—N2—C3122.22 (8)H7A—C7—H7B108.00
C3—N2—H2117.9 (8)C7—C8—H8A109.00
C2—N2—H2119.1 (8)C7—C8—H8B109.00
N1—C1—C2112.89 (8)C9—C8—H8A109.00
N2—C2—C1110.07 (8)C9—C8—H8B109.00
O2—C3—N2123.01 (9)H8A—C8—H8B108.00
O2—C3—C4122.25 (9)C8—C9—H9A109.00
N2—C3—C4114.73 (8)C8—C9—H9B109.00
C3—C4—C5114.08 (8)C10—C9—H9A109.00
C4—C5—C6110.99 (8)C10—C9—H9B109.00
C5—C6—C7113.98 (8)H9A—C9—H9B108.00
C6—C7—C8112.97 (8)C9—C10—H10A109.00
C7—C8—C9113.64 (8)C9—C10—H10B109.00
C8—C9—C10114.14 (9)C11—C10—H10A109.00
C9—C10—C11112.91 (8)C11—C10—H10B109.00
C10—C11—C12113.41 (9)H10A—C10—H10B108.00
N1—C1—H1A109.00C10—C11—H11A109.00
N1—C1—H1B109.00C10—C11—H11B109.00
C2—C1—H1A109.00C12—C11—H11A109.00
C2—C1—H1B109.00C12—C11—H11B109.00
H1A—C1—H1B108.00H11A—C11—H11B108.00
N2—C2—H2A110.00C11—C12—H12A109.00
N2—C2—H2B110.00C11—C12—H12B109.00
C1—C2—H2A110.00C11—C12—H12C109.00
C1—C2—H2B110.00H12A—C12—H12B110.00
H2A—C2—H2B108.00H12A—C12—H12C109.00
C3—C4—H4A109.00H12B—C12—H12C109.00
C3—C4—H4B109.00N1—C13—H13A109.00
C5—C4—H4A109.00N1—C13—H13B109.00
C5—C4—H4B109.00N1—C13—H13C110.00
H4A—C4—H4B108.00H13A—C13—H13B109.00
C4—C5—H5A109.00H13A—C13—H13C109.00
C4—C5—H5B109.00H13B—C13—H13C109.00
C6—C5—H5A109.00N1—C14—H14A109.00
C6—C5—H5B109.00N1—C14—H14B109.00
H5A—C5—H5B108.00N1—C14—H14C109.00
C5—C6—H6A109.00H14A—C14—H14B110.00
C5—C6—H6B109.00H14A—C14—H14C109.00
C7—C6—H6A109.00H14B—C14—H14C109.00
O1—N1—C1—C260.52 (9)N2—C3—C4—C5135.19 (9)
C13—N1—C1—C261.41 (9)C3—C4—C5—C6173.49 (8)
C14—N1—C1—C2179.74 (8)C4—C5—C6—C7177.04 (8)
C3—N2—C2—C181.38 (10)C5—C6—C7—C8179.74 (9)
C2—N2—C3—O21.92 (13)C6—C7—C8—C9178.94 (9)
C2—N2—C3—C4179.36 (8)C7—C8—C9—C10178.76 (9)
N1—C1—C2—N2161.95 (8)C8—C9—C10—C11179.52 (9)
O2—C3—C4—C546.08 (12)C9—C10—C11—C12179.38 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.87 (2)1.89 (2)2.753 (2)168.9 (2)
C1—H1A···O2ii0.992.483.453 (2)166
C1—H1B···O2iii0.992.473.363 (2)150
C4—H4A···O1i0.992.323.204 (2)148
C13—H13C···O2iii0.982.583.438 (2)146
C14—H14B···O2iii0.982.603.449 (2)145
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H30N2O2
Mr258.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.378 (2), 8.113 (4), 17.801 (5)
α, β, γ (°)79.55 (4), 86.38 (3), 86.36 (4)
V3)761.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.23 × 0.19 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2 (large Be window)
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10305, 3149, 2746
Rint0.018
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.06
No. of reflections3149
No. of parameters169
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.16

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
O1—N11.385 (2)N1—C141.489 (2)
O2—C31.237 (2)N2—C21.454 (2)
N1—C11.506 (2)N2—C31.340 (2)
N1—C131.489 (2)
O1—N1—C1111.04 (7)C2—N2—C3122.22 (8)
O1—N1—C13109.25 (7)N1—C1—C2112.89 (8)
O1—N1—C14108.99 (7)N2—C2—C1110.07 (8)
C1—N1—C13111.29 (7)O2—C3—N2123.01 (9)
C1—N1—C14107.63 (7)O2—C3—C4122.25 (9)
C13—N1—C14108.58 (8)N2—C3—C4114.73 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.87 (2)1.89 (2)2.753 (2)168.9 (2)
C1—H1A···O2ii0.99002.48003.453 (2)166.00
C1—H1B···O2iii0.99002.47003.363 (2)150.00
C4—H4A···O1i0.99002.32003.204 (2)148.00
C13—H13C···O2iii0.98002.58003.438 (2)146.00
C14—H14B···O2iii0.98002.60003.449 (2)145.00
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z+1.
 

Acknowledgements

This work was supported by the University of Wrocław. I am grateful to Dr Lucjan Jerzykiewicz, Department of Chem­istry, University of Wrocław for valuable discussion of the results and Professor Kazimiera A. Wilk, Department of Chemistry, Wrocław University of Technology, for providing the surfactant.

References

First citationBelicchi-Ferrari, M., Bisceglie, F., Pelosi, G., Pinelli, S. & Tarasconi, P. (2007). Polyhedron, 26, 5150–5161.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoese, R., Blaeser, D. & Weiss, H.-C. (1999). Angew. Chem. Int. Ed. 38, 988–992.  CrossRef CAS Google Scholar
First citationJeffrey, G. A. & Maluszynska, H. (1989). Acta Cryst. B45, 447–452.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKato, M. & Ikemori, M. (2003). Acta Cryst. C59, m25–m26.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKatrusiak, A., Ratajczak-Sitarz, M. & Kałuski, Z. (1987). Acta Cryst. C43, 2386–2389.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKemmitt, T., Gainsford, G. J., Steel, P. J. & Wikaira, J. (2002). Acta Cryst. E58, o851–o852.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLow, J. N., Cook, A., Imrie, C. T. & Wardell, J. L. (1999). Acta Cryst. C55, IUC9900123,1999  Google Scholar
First citationMaia, E. R., Peguy, A. & Perez, S. (1984). Can. J. Chem. 62, 6–10.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPalatinus, L. & Damay, F. (2009). Acta Cryst. B65, 784–786.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPiłakowska-Pietras, A., Baran, D., Krasowska, A. & Piasecki, A. (2008). J. Surfact. Deterg. 11 187–194  Google Scholar
First citationRospenk, M., Koll, A., Glowiak, T. & Sobczyk, L. (1989). J. Mol. Struct. 195, 33–38.  CSD CrossRef CAS Web of Science Google Scholar
First citationSauer, J. D., Elnagar, H. Y. & Fronczek, F. R. (2003). Acta Cryst. C59, o62–o64.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUlrich, G., Klaska, K. H., Jarchow, O. H., Schmalle, H. W., König, W. A., Heitsch, H., Rathmann, R., Hausen, B. M. & Schulz, K.-H. (1990). Acta Cryst. C46, 1715–1718.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds