organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1607-o1608

1-{6-Chloro-2-[(2-chloro-3-quinol­yl)meth­­oxy]-4-phenyl-3-quinol­yl}ethan-1-one

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 21 April 2010; accepted 3 June 2010; online 9 June 2010)

In the title compound, C27H18Cl2N2O2, the 2-chloro­quinoline and 6-chloro­quinoline rings are almost planar, with maximum deviations from their mean planes of 0.072 (1) and 0.044 (1) Å, respectively, for the Cl atoms. The inter­planar angle between these rings is 14.36 (5)°. The inter­planar angle between the 6-chloro­quinoline and phenyl rings is 66.00 (8)°. In the crystal, mol­ecules are inter­linked by weak C—H⋯O, C—H⋯π and ππ stacking [centroid–centroid distances = 3.7453 (10) and 3.7557 (9) Å] inter­actions.

Related literature

For a related crystal structure containing 2-quinolone, see: Khan et al. (2010[Khan, F. N., Roopan, S. M., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o972-o973.]). For the biological activity, such as anti­bacterial, anti­cancer, anti­viral and cardiotonic activity of compounds containing 2-quinolone, see: Ukita & Mizuno (1960[Ukita, C. & Mizuno, D. (1960). Chem. Pharm. Bull. 8, 1016-1020.]); Jayashree et al. (2010[Jayashree, B. S., Thomas, S. & Nayak, Y. (2010). Med. Chem. Res. 19, 193-209.]); Joseph et al. (2002[Joseph, B., Darro, F., Behard, A., Lesur, B., Collignon, F., Decaestecker, C., Frydman, A., Guillaumet, G. & Kiss, R. (2002). J. Med. Chem. 45, 2543-2555.]); Xiao et al. (2001[Xiao, Z., Waters, N. C., Woodard, C. L., Li, Z. & Li, P. K. (2001). Bioorg. Med. Chem. Lett. 11, 2875-2878.]); Roopan & Khan (2009[Roopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161-169.]).

[Scheme 1]

Experimental

Crystal data
  • C27H18Cl2N2O2

  • Mr = 473.33

  • Triclinic, [P \overline 1]

  • a = 9.2694 (3) Å

  • b = 10.8862 (4) Å

  • c = 13.0490 (5) Å

  • α = 100.615 (3)°

  • β = 103.570 (3)°

  • γ = 111.894 (4)°

  • V = 1132.51 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 295 K

  • 0.25 × 0.21 × 0.14 mm

Data collection
  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.925, Tmax = 0.957

  • 24246 measured reflections

  • 4918 independent reflections

  • 3250 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.05

  • 4918 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C3/C8/C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1 0.93 2.36 2.703 (2) 101
C6—H6⋯O2i 0.93 2.52 3.296 (3) 142
C22—H22⋯Cg1ii 0.93 2.95 3.683 (3) 137
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y-1, z.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Quinolones have emerged as one of the important classes among chemotherapeutic drugs for treatment of various bacterial infections. The quinolones, precisely the compounds with 2-quinolone moiety, show interesting biologic activities such as antibacterial, anticancer, antiviral and cardiotonic ones (Ukita & Mizuno, 1960; Jayashree et al., 2010; Joseph et al., 2002; Xiao et al., 2001). In continuation of our previous work (Roopan et al., 2009; Khan et al., 2010), we report the structure of a new compound, 3-acetyl-2(2-chloroquinolin-3-yl)methoxy-6-chloro-4-phenylquinoline.

In the title molecule, as shown in Fig. 1, the 2-chloroquinoline (N1/C1–C9/Cl2) and 6-chloroquinoline (N2/C11—C19/Cl1) rings are almost planar, with maximal deviations from their mean planes of 0.072 (1) and of 0.044 (1) Å for Cl1 and Cl2 atoms, respectively. The interplanar angle between these rings is 14.36 (5)°. The interplanar angle between the quinoline (N2/C11—C19) and the phenyl (C20–C25) rings equals to 66.00 (8)° while the dihedral angle between the quinoline ring (N2/C11—C19) and the acetaldehyde (C26/C27/O2) group equals to 76.41 (9)°.

The molecules are linked by intermolecular C—H···O interactions (Tab. 1). The crystal structure is further stabilized by C—H···π-electron ring interactions (Tab. 1) and by π-electron···π-electron ring interactions between the pyridine ring (N2/C11– C19; its centroid is Cg1) with each of the benzene rings (C4–C9; its centroid is Cg2) and (C14–C19; its centroid is Cg3). The distances between these centroids of the respective rings are: Cg1···Cg2(1-x, 1-y, 1-z) = 3.7453 (10) Å and Cg1···Cg3 (1-x, 1-y, 2-z) = 3.7557 (9) Å.

Related literature top

For a related crystal structure containing 2-quinolone, see: Khan et al. (2010). For the biological activity, such as antibacterial, anticancer, antiviral and cardiotonic activity of compounds containing 2-quinolone, see: Ukita & Mizuno (1960); Jayashree et al. (2010); Joseph et al. (2002); Xiao et al. (2001); Roopan & Khan (2009).

Experimental top

To a solution of 3-acetyl-6-chloro-2-hydroxy-4-phenylquinoline (297 mg, 1 mmol) in 5 ml of dimethylsulphoxide) were added solid 2-chloro-3-chloromethylquinoline (211 mg, 1 mmol) and powder Ag2SO4 (30 mg, 0.1 mmol). Then the mixture was refluxed at 383 K. The reaction was completed in 20 min, having been monitored by the thin layer chromatography using petroleum ether/ethyl acetate (95:5) as an eluant. The reaction mixture was then filtered to remove the catalyst, Ag2SO4. The filtrate liquid was added dropwise into 50 g of crushed ice. The solution was neutralized by 20 ml of 2N HCl. The precipitate was filtered, dried and re-crystallized from 10 ml of ethanol. The solution was kept for a day after which the resulting crystals were isolated and dried. Colourless block-shaped crystals measured about 0.20 mm in each direction.

Refinement top

All the hydrogens were discernible in the difference electron density maps. However, they were constrained by the riding model approximation: C—Hmethylene=0.97 Å; C—Hmethyl=0.96 Å; C—Haryl=0.93 Å; Uiso(Hmethylene/aryl)=1.2Ueq(Cmethylene/aryl); UisoH(methyl)=1.5Ueq(Cmethyl).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title molecule, showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
1-{6-Chloro-2-[(2-chloro-3-quinolyl)methoxy]-4-phenyl-3-quinolyl}ethan-1-one top
Crystal data top
C27H18Cl2N2O2Z = 2
Mr = 473.33F(000) = 488
Triclinic, P1Dx = 1.388 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2694 (3) ÅCell parameters from 1523 reflections
b = 10.8862 (4) Åθ = 1.9–21.4°
c = 13.0490 (5) ŵ = 0.32 mm1
α = 100.615 (3)°T = 295 K
β = 103.570 (3)°Block, colourless
γ = 111.894 (4)°0.25 × 0.21 × 0.14 mm
V = 1132.51 (9) Å3
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
4918 independent reflections
Radiation source: Enhance (Mo) X-ray Source3250 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.925, Tmax = 0.957k = 1313
24246 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0549P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4918 reflectionsΔρmax = 0.27 e Å3
300 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
71 constraintsExtinction coefficient: 0.0099 (17)
Primary atom site location: structure-invariant direct methods
Crystal data top
C27H18Cl2N2O2γ = 111.894 (4)°
Mr = 473.33V = 1132.51 (9) Å3
Triclinic, P1Z = 2
a = 9.2694 (3) ÅMo Kα radiation
b = 10.8862 (4) ŵ = 0.32 mm1
c = 13.0490 (5) ÅT = 295 K
α = 100.615 (3)°0.25 × 0.21 × 0.14 mm
β = 103.570 (3)°
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
4918 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
3250 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.957Rint = 0.037
24246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
4918 reflectionsΔρmin = 0.35 e Å3
300 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01220 (6)0.20006 (6)1.04669 (4)0.0754 (2)
Cl20.74140 (7)0.93000 (5)0.71360 (5)0.0840 (2)
O10.59905 (14)0.49825 (11)0.72135 (10)0.0560 (4)
O20.74428 (17)0.29669 (16)0.77583 (12)0.0814 (6)
N10.84627 (17)0.84682 (14)0.56079 (12)0.0521 (5)
N20.43430 (15)0.49906 (13)0.82893 (10)0.0430 (4)
C10.7687 (2)0.80443 (17)0.62730 (14)0.0484 (6)
C20.70647 (18)0.66777 (16)0.63617 (13)0.0432 (5)
C30.73284 (19)0.57472 (16)0.56702 (13)0.0453 (5)
C40.8507 (2)0.52185 (18)0.42066 (13)0.0520 (6)
C50.9361 (2)0.56806 (19)0.35310 (14)0.0564 (6)
C60.9910 (2)0.7072 (2)0.35350 (15)0.0575 (7)
C70.9603 (2)0.79738 (19)0.42130 (14)0.0560 (6)
C80.87261 (19)0.75263 (16)0.49223 (13)0.0445 (5)
C90.81637 (19)0.61318 (16)0.49267 (13)0.0428 (5)
C100.6179 (2)0.63335 (16)0.71731 (14)0.0486 (6)
C110.50542 (19)0.43665 (16)0.77951 (13)0.0431 (5)
C120.49480 (18)0.30284 (15)0.77809 (12)0.0416 (5)
C130.39256 (18)0.22631 (15)0.82609 (12)0.0388 (5)
C140.19783 (18)0.21883 (17)0.93163 (13)0.0459 (5)
C150.12456 (19)0.28562 (18)0.98332 (14)0.0495 (6)
C160.1567 (2)0.42295 (19)0.98914 (14)0.0530 (6)
C170.25945 (19)0.49098 (17)0.93803 (13)0.0485 (6)
C180.33581 (18)0.42562 (15)0.88126 (12)0.0390 (5)
C190.30637 (17)0.28760 (15)0.87940 (12)0.0385 (5)
C200.37473 (19)0.08368 (15)0.82266 (13)0.0416 (5)
C210.2255 (2)0.03105 (17)0.76412 (15)0.0575 (6)
C220.2112 (3)0.16304 (18)0.75627 (17)0.0661 (7)
C230.3442 (3)0.18296 (19)0.80755 (16)0.0639 (8)
C240.4922 (3)0.0704 (2)0.86684 (15)0.0587 (7)
C250.5077 (2)0.06250 (17)0.87376 (13)0.0481 (6)
C260.6008 (2)0.25390 (17)0.72580 (14)0.0506 (6)
C270.5199 (3)0.1518 (2)0.61324 (16)0.0879 (9)
H30.694700.483400.569000.0540*
H40.814600.429500.419500.0620*
H50.958200.507200.306300.0680*
H61.049000.737600.306800.0690*
H70.997400.889300.421000.0670*
H10A0.681500.700800.789800.0580*
H10B0.511000.634000.693400.0580*
H140.176400.128000.930700.0550*
H160.108500.467601.027500.0640*
H170.279500.582000.940700.0580*
H210.134200.018600.729800.0690*
H220.110800.239200.716000.0790*
H230.334100.272400.802200.0770*
H240.582400.083400.902500.0700*
H250.608800.138300.913300.0580*
H27A0.598600.124900.591800.1320*
H27B0.478900.193300.561600.1320*
H27C0.430000.071400.613800.1320*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0653 (3)0.0939 (4)0.0895 (4)0.0336 (3)0.0538 (3)0.0437 (3)
Cl20.1264 (5)0.0624 (3)0.1087 (4)0.0548 (3)0.0834 (4)0.0406 (3)
O10.0692 (8)0.0515 (7)0.0724 (8)0.0302 (6)0.0473 (7)0.0353 (6)
O20.0569 (9)0.1003 (11)0.0888 (10)0.0354 (8)0.0381 (8)0.0119 (8)
N10.0597 (9)0.0463 (8)0.0640 (9)0.0239 (7)0.0349 (8)0.0269 (7)
N20.0441 (7)0.0441 (7)0.0467 (8)0.0205 (6)0.0192 (6)0.0191 (6)
C10.0508 (10)0.0473 (10)0.0576 (10)0.0235 (8)0.0273 (9)0.0226 (8)
C20.0393 (9)0.0438 (9)0.0487 (9)0.0154 (7)0.0179 (8)0.0202 (8)
C30.0451 (9)0.0393 (9)0.0506 (10)0.0130 (7)0.0182 (8)0.0200 (8)
C40.0587 (11)0.0490 (10)0.0487 (10)0.0233 (9)0.0189 (9)0.0149 (8)
C50.0596 (11)0.0669 (12)0.0506 (10)0.0324 (10)0.0236 (9)0.0183 (9)
C60.0560 (11)0.0721 (13)0.0551 (11)0.0276 (10)0.0299 (9)0.0286 (10)
C70.0620 (11)0.0554 (11)0.0622 (11)0.0240 (9)0.0333 (10)0.0306 (9)
C80.0427 (9)0.0471 (9)0.0485 (10)0.0187 (8)0.0200 (8)0.0210 (8)
C90.0398 (9)0.0454 (9)0.0421 (9)0.0160 (7)0.0130 (7)0.0173 (7)
C100.0521 (10)0.0461 (9)0.0573 (10)0.0214 (8)0.0278 (9)0.0247 (8)
C110.0455 (9)0.0442 (9)0.0465 (9)0.0181 (8)0.0242 (8)0.0205 (7)
C120.0438 (9)0.0427 (9)0.0432 (9)0.0199 (7)0.0200 (8)0.0146 (7)
C130.0396 (8)0.0387 (8)0.0385 (8)0.0159 (7)0.0151 (7)0.0122 (7)
C140.0429 (9)0.0471 (9)0.0511 (10)0.0171 (8)0.0210 (8)0.0209 (8)
C150.0413 (9)0.0642 (11)0.0512 (10)0.0229 (8)0.0248 (8)0.0240 (9)
C160.0511 (10)0.0722 (12)0.0533 (10)0.0377 (9)0.0273 (9)0.0218 (9)
C170.0523 (10)0.0517 (10)0.0517 (10)0.0297 (9)0.0207 (9)0.0189 (8)
C180.0372 (8)0.0431 (9)0.0385 (8)0.0177 (7)0.0139 (7)0.0144 (7)
C190.0353 (8)0.0423 (9)0.0387 (8)0.0158 (7)0.0140 (7)0.0139 (7)
C200.0476 (9)0.0400 (9)0.0433 (9)0.0183 (8)0.0248 (8)0.0153 (7)
C210.0534 (11)0.0467 (10)0.0685 (12)0.0185 (9)0.0195 (9)0.0165 (9)
C220.0716 (13)0.0425 (10)0.0789 (14)0.0162 (10)0.0322 (11)0.0158 (10)
C230.0994 (16)0.0485 (11)0.0689 (12)0.0401 (12)0.0496 (12)0.0287 (10)
C240.0805 (14)0.0709 (13)0.0551 (11)0.0502 (12)0.0367 (11)0.0312 (10)
C250.0533 (10)0.0525 (10)0.0452 (9)0.0253 (8)0.0228 (8)0.0164 (8)
C260.0604 (11)0.0532 (10)0.0562 (11)0.0298 (9)0.0356 (10)0.0249 (9)
C270.1010 (17)0.1078 (18)0.0619 (13)0.0604 (15)0.0312 (13)0.0040 (12)
Geometric parameters (Å, º) top
Cl1—C151.747 (2)C17—C181.408 (3)
Cl2—C11.7394 (19)C18—C191.418 (2)
O1—C101.427 (2)C20—C211.386 (3)
O1—C111.357 (2)C20—C251.378 (3)
O2—C261.196 (3)C21—C221.375 (3)
N1—C11.295 (2)C22—C231.371 (4)
N1—C81.365 (2)C23—C241.372 (3)
N2—C111.298 (2)C24—C251.383 (3)
N2—C181.374 (2)C26—C271.488 (3)
C1—C21.419 (2)C3—H30.9300
C2—C31.361 (2)C4—H40.9300
C2—C101.503 (2)C5—H50.9300
C3—C91.406 (2)C6—H60.9300
C4—C51.360 (3)C7—H70.9300
C4—C91.416 (3)C10—H10A0.9700
C5—C61.405 (3)C10—H10B0.9700
C6—C71.354 (3)C14—H140.9300
C7—C81.407 (3)C16—H160.9300
C8—C91.411 (2)C17—H170.9300
C11—C121.419 (2)C21—H210.9300
C12—C131.366 (2)C22—H220.9300
C12—C261.512 (3)C23—H230.9300
C13—C191.433 (2)C24—H240.9300
C13—C201.490 (2)C25—H250.9300
C14—C151.359 (3)C27—H27A0.9600
C14—C191.409 (2)C27—H27B0.9600
C15—C161.395 (3)C27—H27C0.9600
C16—C171.362 (3)
Cl1···C22i3.497 (3)C26···C253.120 (2)
Cl2···C24ii3.391 (3)C27···C203.400 (3)
Cl1···H10Aiii2.9500C1···H27Bv2.9600
Cl2···H10A2.7700C1···H21vi3.0100
Cl2···H10B3.0500C4···H10Bv2.9700
O1···O23.076 (2)C4···H4iv3.1000
O2···O13.076 (2)C12···H253.0200
O2···C253.360 (2)C14···H213.1000
O2···C6iv3.296 (3)C15···H10Aiii3.0300
O1···H32.3600C16···H16x3.0900
O2···H252.8900C20···H142.6900
O2···H6iv2.5200C20···H27C2.8800
O2···H16iii2.8900C21···H142.7600
N2···C5v3.410 (2)C26···H252.9500
N1···H21vi2.7000H3···O12.3600
N1···H7vii2.6300H3···H42.5400
N1···H27Bv2.8900H4···H32.5400
N2···H10A2.7500H4···C4iv3.1000
N2···H10B2.5600H6···O2iv2.5200
C4···C4iv3.291 (3)H7···N1vii2.6300
C5···C18v3.507 (2)H10A···Cl22.7700
C5···N2v3.410 (2)H10A···N22.7500
C6···C18v3.376 (2)H10A···Cl1iii2.9500
C6···O2iv3.296 (3)H10A···C15iii3.0300
C11···C17iii3.583 (2)H10B···Cl23.0500
C11···C16iii3.399 (2)H10B···N22.5600
C14···C213.292 (3)H10B···C4v2.9700
C16···C11iii3.399 (2)H14···C202.6900
C17···C11iii3.583 (2)H14···C212.7600
C18···C5v3.507 (2)H16···O2iii2.8900
C18···C6v3.376 (2)H16···C16x3.0900
C18···C18iii3.397 (2)H16···H16x2.3700
C20···C273.400 (3)H21···N1xi2.7000
C21···C143.292 (3)H21···C1xi3.0100
C22···Cl1i3.497 (3)H21···C143.1000
C24···C24viii3.476 (3)H25···O22.8900
C24···C25viii3.370 (3)H25···C123.0200
C24···Cl2ix3.391 (3)H25···C262.9500
C25···O23.360 (2)H27B···N1v2.8900
C25···C24viii3.370 (3)H27B···C1v2.9600
C25···C263.120 (2)H27C···C202.8800
C10—O1—C11118.10 (14)C20—C21—C22120.62 (19)
C1—N1—C8117.82 (15)C21—C22—C23120.4 (2)
C11—N2—C18116.19 (14)C22—C23—C24119.7 (2)
Cl2—C1—N1115.52 (14)C23—C24—C25120.1 (2)
Cl2—C1—C2118.16 (14)C20—C25—C24120.63 (18)
N1—C1—C2126.32 (17)O2—C26—C12119.55 (16)
C1—C2—C3115.29 (16)O2—C26—C27122.6 (2)
C1—C2—C10120.45 (15)C12—C26—C27117.83 (18)
C3—C2—C10124.27 (15)C2—C3—H3119.00
C2—C3—C9121.62 (16)C9—C3—H3119.00
C5—C4—C9120.58 (17)C5—C4—H4120.00
C4—C5—C6120.40 (18)C9—C4—H4120.00
C5—C6—C7120.58 (18)C4—C5—H5120.00
C6—C7—C8120.27 (18)C6—C5—H5120.00
N1—C8—C7118.72 (16)C5—C6—H6120.00
N1—C8—C9121.43 (16)C7—C6—H6120.00
C7—C8—C9119.84 (16)C6—C7—H7120.00
C3—C9—C4124.14 (16)C8—C7—H7120.00
C3—C9—C8117.52 (16)O1—C10—H10A110.00
C4—C9—C8118.32 (16)O1—C10—H10B110.00
O1—C10—C2106.79 (14)C2—C10—H10A110.00
O1—C11—N2120.52 (15)C2—C10—H10B110.00
O1—C11—C12113.48 (15)H10A—C10—H10B109.00
N2—C11—C12126.00 (16)C15—C14—H14120.00
C11—C12—C13118.51 (16)C19—C14—H14120.00
C11—C12—C26118.07 (15)C15—C16—H16120.00
C13—C12—C26123.40 (15)C17—C16—H16120.00
C12—C13—C19118.23 (15)C16—C17—H17119.00
C12—C13—C20119.71 (16)C18—C17—H17120.00
C19—C13—C20122.06 (15)C20—C21—H21120.00
C15—C14—C19119.79 (16)C22—C21—H21120.00
Cl1—C15—C14119.98 (15)C21—C22—H22120.00
Cl1—C15—C16118.08 (15)C23—C22—H22120.00
C14—C15—C16121.94 (18)C22—C23—H23120.00
C15—C16—C17119.32 (18)C24—C23—H23120.00
C16—C17—C18121.02 (17)C23—C24—H24120.00
N2—C18—C17117.92 (15)C25—C24—H24120.00
N2—C18—C19123.13 (15)C20—C25—H25120.00
C17—C18—C19118.95 (15)C24—C25—H25120.00
C13—C19—C14123.33 (15)C26—C27—H27A109.00
C13—C19—C18117.73 (15)C26—C27—H27B109.00
C14—C19—C18118.92 (15)C26—C27—H27C109.00
C13—C20—C21120.60 (16)H27A—C27—H27B110.00
C13—C20—C25120.80 (15)H27A—C27—H27C109.00
C21—C20—C25118.55 (16)H27B—C27—H27C109.00
C10—O1—C11—C12179.97 (14)C11—C12—C13—C20178.02 (14)
C10—O1—C11—N20.6 (2)C26—C12—C13—C19175.94 (15)
C11—O1—C10—C2172.51 (14)C26—C12—C13—C203.5 (2)
C1—N1—C8—C7178.41 (17)C11—C12—C26—O277.7 (2)
C1—N1—C8—C90.5 (3)C11—C12—C26—C27103.07 (19)
C8—N1—C1—C20.3 (3)C13—C12—C26—O2100.8 (2)
C8—N1—C1—Cl2179.24 (13)C13—C12—C26—C2778.5 (2)
C18—N2—C11—O1177.01 (14)C12—C13—C19—C14180.00 (15)
C18—N2—C11—C122.3 (2)C12—C13—C19—C181.5 (2)
C11—N2—C18—C17178.56 (15)C20—C13—C19—C140.5 (2)
C11—N2—C18—C192.3 (2)C20—C13—C19—C18177.98 (14)
N1—C1—C2—C30.0 (3)C12—C13—C20—C21114.4 (2)
Cl2—C1—C2—C3179.53 (14)C12—C13—C20—C2563.0 (2)
Cl2—C1—C2—C100.7 (2)C19—C13—C20—C2166.2 (2)
N1—C1—C2—C10179.77 (18)C19—C13—C20—C25116.50 (19)
C1—C2—C3—C90.1 (3)C19—C14—C15—Cl1179.18 (13)
C10—C2—C3—C9179.87 (17)C19—C14—C15—C161.8 (3)
C3—C2—C10—O111.0 (2)C15—C14—C19—C13178.00 (16)
C1—C2—C10—O1169.28 (15)C15—C14—C19—C180.5 (2)
C2—C3—C9—C4178.49 (17)Cl1—C15—C16—C17178.30 (14)
C2—C3—C9—C80.1 (3)C14—C15—C16—C172.6 (3)
C9—C4—C5—C60.3 (3)C15—C16—C17—C181.2 (3)
C5—C4—C9—C3178.26 (18)C16—C17—C18—N2178.19 (16)
C5—C4—C9—C80.1 (3)C16—C17—C18—C191.0 (2)
C4—C5—C6—C70.2 (3)N2—C18—C19—C134.1 (2)
C5—C6—C7—C80.1 (3)N2—C18—C19—C14177.32 (15)
C6—C7—C8—C90.0 (3)C17—C18—C19—C13176.73 (15)
C6—C7—C8—N1178.91 (17)C17—C18—C19—C141.9 (2)
N1—C8—C9—C30.4 (3)C13—C20—C21—C22176.68 (18)
N1—C8—C9—C4178.90 (16)C25—C20—C21—C220.7 (3)
C7—C8—C9—C3178.51 (17)C13—C20—C25—C24177.52 (17)
C7—C8—C9—C40.0 (3)C21—C20—C25—C240.1 (3)
O1—C11—C12—C13174.57 (14)C20—C21—C22—C230.8 (3)
O1—C11—C12—C266.9 (2)C21—C22—C23—C240.1 (3)
N2—C11—C12—C134.7 (3)C22—C23—C24—C250.8 (3)
N2—C11—C12—C26173.79 (16)C23—C24—C25—C200.9 (3)
C11—C12—C13—C192.5 (2)
Symmetry codes: (i) x, y, z+2; (ii) x, y+1, z; (iii) x+1, y+1, z+2; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1; (vi) x+1, y+1, z; (vii) x+2, y+2, z+1; (viii) x+1, y, z+2; (ix) x, y1, z; (x) x, y+1, z+2; (xi) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C3/C8/C9 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.932.362.703 (2)101
C6—H6···O2iv0.932.523.296 (3)142
C22—H22···Cg1xi0.932.953.683 (3)137
Symmetry codes: (iv) x+2, y+1, z+1; (xi) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC27H18Cl2N2O2
Mr473.33
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.2694 (3), 10.8862 (4), 13.0490 (5)
α, β, γ (°)100.615 (3), 103.570 (3), 111.894 (4)
V3)1132.51 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.25 × 0.21 × 0.14
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.925, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
24246, 4918, 3250
Rint0.037
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.05
No. of reflections4918
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.35

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C3/C8/C9 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.932.362.703 (2)101
C6—H6···O2i0.932.523.296 (3)142
C22—H22···Cg1ii0.932.953.683 (3)137
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y1, z.
 

Acknowledgements

We thank the Department of Science and Technology, India, for the use of the CCD facility set up under the IRHPA–DST program at IISc. We also thank Professor T. N. Guru Row, IISc, Bangalore, for useful discussions about crystallographic problems. FNK thanks the DST for Fast Track Proposal funding.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJayashree, B. S., Thomas, S. & Nayak, Y. (2010). Med. Chem. Res. 19, 193–209.  Web of Science CrossRef CAS Google Scholar
First citationJoseph, B., Darro, F., Behard, A., Lesur, B., Collignon, F., Decaestecker, C., Frydman, A., Guillaumet, G. & Kiss, R. (2002). J. Med. Chem. 45, 2543–2555.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, F. N., Roopan, S. M., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o972–o973.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRoopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161–169.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUkita, C. & Mizuno, D. (1960). Chem. Pharm. Bull. 8, 1016–1020.  CrossRef Google Scholar
First citationXiao, Z., Waters, N. C., Woodard, C. L., Li, Z. & Li, P. K. (2001). Bioorg. Med. Chem. Lett. 11, 2875–2878.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1607-o1608
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds