organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(Tri­fluoro­meth­yl)pyrimidine-2,4(1H,3H)-dione monohydrate

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: actaeli@gmail.com

(Received 27 May 2010; accepted 13 June 2010; online 18 June 2010)

The title compound, C5H3F3N2O2·H2O, was prepared by the reaction of ethyl 4,4,4-trifluoro-3-oxobutano­ate with urea. In the crystal, the 6-(trifluoro­meth­yl)pyrimidine-2,4(1H,3H)-dione and water mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds. A ring dimer structure is formed by additional inter­molecular N—H⋯O hydrogen bonds.

Related literature

For applications of pyrimidine derivatives as pesticides and pharmaceutical agents, see: Condon et al. (1993[Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41-46. Alton, Hampshire, England: BCPC Publications.]); as agrochemicals, see: Maeno et al. (1990[Maeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415-422. Alton, Hampshire, England: BCPC Publications.]); as anti­viral agents, see: Gilchrist (1997[Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261-276. Singapore: Addison Wesley Longman.]); as herbicides, see: Selby et al. (2002[Selby, T. P., Drumm, J. E., Coats, R. A., Coppo, F. T., Gee, S. K., Hay, J. V., Pasteris, R. J. & Stevenson, T. M. (2002). ACS Symposium Series, Vol. 800, Synthesis and Chemistry of Agrochemicals VI, pp. 74-84. Washington DC: American Chemical Society.]).

[Scheme 1]

Experimental

Crystal data
  • C5H3F3N2O2·H2O

  • Mr = 198.11

  • Monoclinic, P 21 /c

  • a = 5.0250 (8) Å

  • b = 7.046 (1) Å

  • c = 20.769 (2) Å

  • β = 91.300 (7)°

  • V = 735.16 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.956, Tmax = 0.966

  • 6863 measured reflections

  • 1747 independent reflections

  • 1382 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.07

  • 1747 reflections

  • 134 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O1i 0.825 (17) 2.017 (18) 2.7815 (13) 153.9 (17)
O3—H3A⋯O2ii 0.86 (2) 1.95 (2) 2.8066 (13) 176.0 (17)
N2—H2⋯O3 0.896 (17) 1.824 (17) 2.7191 (14) 177.9 (16)
N1—H1⋯O1iii 0.954 (17) 1.896 (18) 2.8490 (14) 176.4 (16)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y-1, z; (iii) -x+1, -y+2, -z+1.

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Pyrimidine derivatives are very important molecules in biology and have many application in the areas of pesticide and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, shch as AZT, which is the most widely used anti-AIDS drug (Gilchrist, 1997). Recently, a new series of highly active herbicides of substituted azolylpyrimidines were reported (Selby et al., 2002). In order to discover further biologically active pyrimidine compounds, the title compound, (I), was synthesized and its crystal structure determined (Fig. 1).

In the crystal strucrure, The part of 6-(trifluoromethyl)pyrimidine-2,4(1H,3H)-dione and water molecule are linked by N—H···O and O—H···O hydrogen bonds. The ring dimer structure is formed by addition intermolecular N—H···O hydrogen bonds.

Related literature top

For applications of pyrimidine derivatives as pesticides and pharmaceutical agents, see: Condon et al. (1993); as agrochemicals, see: Maeno et al. (1990); as antiviral agents, see: Gilchrist (1997); as herbicides, see: Selby et al. (2002).

Experimental top

To 35 ml absolute ethanol sodium (1.38 g, 60 mmol) was added. When sodium was dissppeared, ethyl 4,4,4-trifluoro-3-oxobutanoate(5.50 g, 30 mmol) and urea (1.80 g, 30 mmol) were added to the solution. The mixture was refluxed for 20 hr., The solvent was evaporated in vacuo and the residue was washed with water. The title compound was recrystallized from water and single crystals of (I) were obtained by slow evaporation.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.95 Å, O—H = 0.86 Å or 0.825 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009); cell refinement: CrystalClear-SM Expert (Rigaku/MSC, 2009); data reduction: CrystalClear-SM Expert (Rigaku/MSC, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed line.
6-(Trifluoromethyl)pyrimidine-2,4(1H,3H)-dione monohydrate top
Crystal data top
C5H3F3N2O2·H2OF(000) = 400
Mr = 198.11Dx = 1.790 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 5.0250 (8) ÅCell parameters from 2492 reflections
b = 7.046 (1) Åθ = 2.0–27.9°
c = 20.769 (2) ŵ = 0.19 mm1
β = 91.300 (7)°T = 113 K
V = 735.16 (17) Å3Prism, colorless
Z = 40.24 × 0.20 × 0.18 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
1747 independent reflections
Radiation source: rotating anode1382 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.029
ω scansθmax = 27.9°, θmin = 2.0°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
h = 66
Tmin = 0.956, Tmax = 0.966k = 69
6863 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.0166P]
where P = (Fo2 + 2Fc2)/3
1747 reflections(Δ/σ)max < 0.001
134 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C5H3F3N2O2·H2OV = 735.16 (17) Å3
Mr = 198.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0250 (8) ŵ = 0.19 mm1
b = 7.046 (1) ÅT = 113 K
c = 20.769 (2) Å0.24 × 0.20 × 0.18 mm
β = 91.300 (7)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
1747 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
1382 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.966Rint = 0.029
6863 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.33 e Å3
1747 reflectionsΔρmin = 0.21 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.74748 (17)0.37877 (12)0.26992 (4)0.0431 (3)
F20.33139 (17)0.43344 (12)0.28202 (4)0.0433 (3)
F30.54045 (16)0.25207 (11)0.34843 (4)0.0359 (2)
O10.32964 (16)0.78481 (12)0.48978 (4)0.0247 (2)
O21.03039 (17)0.99065 (12)0.37275 (4)0.0261 (2)
O30.09114 (19)0.33980 (15)0.43644 (5)0.0299 (3)
N10.67605 (19)0.88773 (14)0.42979 (5)0.0199 (2)
N20.46193 (19)0.60395 (14)0.40583 (5)0.0187 (2)
C10.4798 (2)0.76007 (17)0.44449 (5)0.0191 (3)
C20.8566 (2)0.87123 (17)0.38039 (6)0.0193 (3)
C30.8191 (2)0.70430 (17)0.34028 (6)0.0196 (3)
H30.92960.68280.30450.023*
C40.6262 (2)0.58089 (16)0.35448 (5)0.0183 (3)
C50.5641 (2)0.40964 (18)0.31352 (6)0.0237 (3)
H10.681 (3)0.999 (2)0.4561 (9)0.048 (5)*
H20.340 (3)0.518 (2)0.4169 (8)0.041 (5)*
H3A0.081 (3)0.234 (3)0.4166 (10)0.049 (5)*
H3B0.024 (3)0.336 (3)0.4642 (8)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0459 (5)0.0380 (5)0.0467 (5)0.0137 (4)0.0277 (4)0.0219 (4)
F20.0400 (5)0.0422 (6)0.0467 (5)0.0051 (4)0.0173 (4)0.0201 (4)
F30.0481 (5)0.0177 (4)0.0423 (5)0.0059 (4)0.0095 (4)0.0025 (3)
O10.0267 (5)0.0250 (5)0.0229 (4)0.0091 (4)0.0097 (4)0.0050 (3)
O20.0237 (5)0.0225 (5)0.0325 (5)0.0076 (4)0.0092 (4)0.0012 (4)
O30.0307 (5)0.0248 (6)0.0347 (6)0.0110 (4)0.0140 (4)0.0049 (4)
N10.0204 (5)0.0192 (6)0.0204 (5)0.0058 (4)0.0042 (4)0.0025 (4)
N20.0191 (5)0.0165 (5)0.0208 (5)0.0046 (4)0.0043 (4)0.0009 (4)
C10.0190 (6)0.0193 (6)0.0190 (5)0.0028 (4)0.0014 (4)0.0000 (5)
C20.0176 (5)0.0187 (6)0.0215 (6)0.0006 (5)0.0023 (4)0.0028 (4)
C30.0192 (6)0.0195 (7)0.0201 (6)0.0010 (5)0.0039 (4)0.0010 (4)
C40.0185 (5)0.0174 (6)0.0191 (6)0.0019 (4)0.0013 (4)0.0007 (5)
C50.0227 (6)0.0216 (7)0.0270 (6)0.0019 (5)0.0064 (5)0.0038 (5)
Geometric parameters (Å, º) top
F1—C51.3245 (14)N1—H10.954 (17)
F2—C51.3374 (15)N2—C11.3636 (15)
F3—C51.3328 (15)N2—C41.3729 (14)
O1—C11.2317 (14)N2—H20.896 (17)
O2—C21.2255 (14)C2—C31.4512 (17)
O3—H3A0.86 (2)C3—C41.3400 (17)
O3—H3B0.825 (17)C3—H30.9500
N1—C11.3742 (15)C4—C51.5050 (17)
N1—C21.3898 (15)
H3A—O3—H3B105.8 (17)C4—C3—C2119.01 (11)
C1—N1—C2126.37 (10)C4—C3—H3120.5
C1—N1—H1114.8 (11)C2—C3—H3120.5
C2—N1—H1118.8 (11)C3—C4—N2123.00 (11)
C1—N2—C4121.34 (10)C3—C4—C5122.52 (11)
C1—N2—H2115.5 (11)N2—C4—C5114.42 (10)
C4—N2—H2123.2 (11)F1—C5—F3107.89 (10)
O1—C1—N2122.04 (10)F1—C5—F2107.48 (10)
O1—C1—N1122.15 (11)F3—C5—F2106.44 (10)
N2—C1—N1115.80 (10)F1—C5—C4112.30 (10)
O2—C2—N1121.15 (11)F3—C5—C4112.34 (10)
O2—C2—C3124.46 (11)F2—C5—C4110.10 (10)
N1—C2—C3114.39 (10)
C4—N2—C1—O1178.24 (10)C2—C3—C4—C5176.73 (10)
C4—N2—C1—N11.87 (16)C1—N2—C4—C32.53 (18)
C2—N1—C1—O1179.13 (11)C1—N2—C4—C5174.89 (10)
C2—N1—C1—N20.76 (17)C3—C4—C5—F110.94 (17)
C1—N1—C2—O2177.49 (11)N2—C4—C5—F1171.62 (10)
C1—N1—C2—C32.59 (16)C3—C4—C5—F3132.78 (12)
O2—C2—C3—C4178.20 (11)N2—C4—C5—F349.78 (14)
N1—C2—C3—C41.88 (16)C3—C4—C5—F2108.79 (13)
C2—C3—C4—N20.49 (18)N2—C4—C5—F268.65 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O1i0.825 (17)2.017 (18)2.7815 (13)153.9 (17)
O3—H3A···O2ii0.86 (2)1.95 (2)2.8066 (13)176.0 (17)
N2—H2···O30.896 (17)1.824 (17)2.7191 (14)177.9 (16)
N1—H1···O1iii0.954 (17)1.896 (18)2.8490 (14)176.4 (16)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y1, z; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC5H3F3N2O2·H2O
Mr198.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)5.0250 (8), 7.046 (1), 20.769 (2)
β (°) 91.300 (7)
V3)735.16 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
Tmin, Tmax0.956, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
6863, 1747, 1382
Rint0.029
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.07
No. of reflections1747
No. of parameters134
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.21

Computer programs: CrystalClear-SM Expert (Rigaku/MSC, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O1i0.825 (17)2.017 (18)2.7815 (13)153.9 (17)
O3—H3A···O2ii0.86 (2)1.95 (2)2.8066 (13)176.0 (17)
N2—H2···O30.896 (17)1.824 (17)2.7191 (14)177.9 (16)
N1—H1···O1iii0.954 (17)1.896 (18)2.8490 (14)176.4 (16)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y1, z; (iii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the Program for New Century Excellent Talents in Universities of Henan Province (No. 2005HANCET-17), the Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Eduation Department, China (grant No. 2007150036).

References

First citationCondon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41–46. Alton, Hampshire, England: BCPC Publications.  Google Scholar
First citationGilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261–276. Singapore: Addison Wesley Longman.  Google Scholar
First citationMaeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415–422. Alton, Hampshire, England: BCPC Publications.  Google Scholar
First citationRigaku/MSC (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSelby, T. P., Drumm, J. E., Coats, R. A., Coppo, F. T., Gee, S. K., Hay, J. V., Pasteris, R. J. & Stevenson, T. M. (2002). ACS Symposium Series, Vol. 800, Synthesis and Chemistry of Agrochemicals VI, pp. 74–84. Washington DC: American Chemical Society.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds