organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­spiro­[cyclo­propane-1,5′-endo-tri­cyclo­[5.2.1.02,6]deca-3,8-diene-10′,1′′-cyclo­propane]

aChemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk PL 80233, Poland
*Correspondence e-mail: lukasz.ponikiewski@pg.gda.pl

(Received 1 June 2010; accepted 8 June 2010; online 16 June 2010)

The title compound, C14H16, is built up from three five-membered rings. Two of the five-membered rings display an envelope conformation and the third one is almost planar (r.m.s. deviation = 0.014 Å).

Related literature

For the synthesis, see: Khusnutdinov et al. (1988[Khusnutdinov, R. I., Dokichev, V. A., Galeev, D. K., Asylguzhina, N. F., Sultanov, S. Z. & Dzhemilev, U. M. (1988). Russ. Chem. Bull. 37, 1932-1935.]); Wilcox et al. (1961[Wilcox, C. F. & Craig, R. R. (1961). J. Am. Chem. Soc. 83, 3866-3871.]). For related structures, see: Caira et al. (1995[Caira, M. R., Bedekar, A. V. & Singh, V. (1995). J. Chem. Crystallogr. 25, 583-587.]); Haumann et al. (1997[Haumann, T., Boese, R., Kozhushkov, S. I., Rauch, K. & de Meijere, A. (1997). Liebigs Ann. Chem. 10, 2047-2053.]); Brookings et al. (2001[Brookings, D. C., Harrison, S. A., Whitby, R. J., Crombie, B. & Jones, R. V. H. (2001). Organometallics, 20, 4574-4583.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16

  • Mr = 184.27

  • Triclinic, [P \overline 1]

  • a = 6.4079 (5) Å

  • b = 8.6355 (8) Å

  • c = 10.7216 (10) Å

  • α = 68.488 (9)°

  • β = 81.625 (7)°

  • γ = 73.351 (8)°

  • V = 528.27 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.23 × 0.22 × 0.21 mm

Data collection
  • Oxford Diffraction Xcalibur S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.775, Tmax = 1

  • 3444 measured reflections

  • 2269 independent reflections

  • 1348 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.168

  • S = 0.99

  • 2269 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (I) is a product of cyclodimerization of spiro[2.4]hepta-4,6-diene. After few weeks of storing of the starting diene at room temperature big crystals of (I) were isolated with relatively high yield. In contrast to previously reported method of synthesis of (I) (Khusnutdinov et al. 1988), we did not use the additional heating and the catalyst.

The X-ray crystallographic analysis confirms this proposed molecular structure (Fig. 1). The C14H16 is built up from three five-membered rings and two three-membered rings. The one of the five-membered rings (C2—C3—C4—C5—C6) is almost planar. The mean deviation of the five atoms C2, C3, C4, C5, C6 from their least-squares plane is 0.0136 Å. Additionally, the C5 atom is a junction between the five-membered ring and a cyclopropane ring. The dihedral angle between the central ring planes is 89.89 (2)°.

The second and third five-membered rings (C1—C2—C6—C7—C10 and C7—C8—C9—C1—C10) have an envelope conformation.The C10 atom is a junction with the second cyclopropane ring.

The typical C2=C3 and C6=C7 double bonds lengths 1.312 (3) Å, 1.309 (3) Å respectively suggest that the C2, C3, C6, C7 atoms are sp2 hybridized. The bond lengths and angles are within normal ranges (Brookings et al. 2001; Caira et al. 1995; Haumann et al. 1997).

Related literature top

For the synthesis, see: Khusnutdinov et al. (1988); Wilcox et al. (1961). For related structures, see: Caira et al. (1995); Haumann et al. (1997); Brookings et al. (2001).

Experimental top

Spiro[2.4]hepta-4,6-diene was obtained according to the literature procedure (Wilcox et al., 1961). First fraction from the final distillation of spiro[2.4]hepta-4,6-diene (2.05 g) was stored at room temperature for few weeks. After this time large, colorless crystals of the title compound deposited with 54% (1.10 g) yield.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93–0.98 Å, Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 25% probability level.
Dispiro[cyclopropane-1,5'-endo-tricyclo[5.2.1.02,6]deca-3,8-diene- 10',1''-cyclopropane] top
Crystal data top
C14H16Z = 2
Mr = 184.27F(000) = 200
Triclinic, P1Dx = 1.158 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4079 (5) ÅCell parameters from 1384 reflections
b = 8.6355 (8) Åθ = 2.6–28.5°
c = 10.7216 (10) ŵ = 0.07 mm1
α = 68.488 (9)°T = 293 K
β = 81.625 (7)°Block, colourless
γ = 73.351 (8)°0.23 × 0.22 × 0.21 mm
V = 528.27 (8) Å3
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
2269 independent reflections
Graphite monochromator1348 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.024
ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 88
Tmin = 0.775, Tmax = 1k = 1010
3444 measured reflectionsl = 813
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.095P)2]
where P = (Fo2 + 2Fc2)/3
2269 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C14H16γ = 73.351 (8)°
Mr = 184.27V = 528.27 (8) Å3
Triclinic, P1Z = 2
a = 6.4079 (5) ÅMo Kα radiation
b = 8.6355 (8) ŵ = 0.07 mm1
c = 10.7216 (10) ÅT = 293 K
α = 68.488 (9)°0.23 × 0.22 × 0.21 mm
β = 81.625 (7)°
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
2269 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1348 reflections with I > 2σ(I)
Tmin = 0.775, Tmax = 1Rint = 0.024
3444 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 0.99Δρmax = 0.22 e Å3
2269 reflectionsΔρmin = 0.15 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7397 (3)0.6967 (3)0.2398 (2)0.0523 (6)
H1A0.77890.78460.26230.063*
C20.7772 (3)0.5136 (3)0.35036 (19)0.0469 (5)
H2A0.72910.5220.43920.056*
C30.9992 (3)0.3926 (3)0.3543 (2)0.0577 (6)
H3A1.12340.41040.37630.069*
C40.9994 (3)0.2591 (3)0.3232 (2)0.0539 (6)
H4A1.12410.17310.31910.065*
C50.7809 (3)0.2602 (2)0.29543 (19)0.0441 (5)
C60.6293 (3)0.4281 (2)0.30671 (18)0.0398 (5)
H6A0.51220.40350.37490.048*
C70.5333 (3)0.5718 (2)0.17594 (18)0.0451 (5)
H7A0.40420.55980.1450.054*
C80.7187 (4)0.5983 (3)0.0741 (2)0.0559 (6)
H8A0.74370.56770.00240.067*
C90.8395 (3)0.6717 (3)0.1112 (2)0.0594 (6)
H9A0.96460.70270.06580.071*
C100.5010 (3)0.7287 (2)0.21729 (19)0.0455 (5)
C110.3131 (4)0.7909 (3)0.3016 (2)0.0631 (6)
H11A0.34340.82750.3710.076*
H11B0.19330.73630.32350.076*
C120.3480 (4)0.8997 (3)0.1568 (2)0.0646 (6)
H12A0.24890.91020.09210.078*
H12B0.3991.00140.13960.078*
C130.7460 (4)0.1787 (3)0.2006 (2)0.0620 (6)
H13A0.61990.23520.14560.074*
H13B0.8740.12320.15770.074*
C140.7068 (4)0.0959 (3)0.3469 (2)0.0644 (6)
H14B0.81120.00990.3930.077*
H14C0.55690.10220.38090.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0501 (12)0.0406 (12)0.0711 (14)0.0082 (9)0.0029 (10)0.0272 (11)
C20.0463 (11)0.0487 (13)0.0494 (11)0.0028 (9)0.0071 (9)0.0260 (10)
C30.0425 (12)0.0604 (15)0.0706 (14)0.0029 (10)0.0187 (10)0.0245 (12)
C40.0396 (11)0.0502 (14)0.0637 (13)0.0054 (10)0.0080 (9)0.0207 (11)
C50.0454 (11)0.0349 (11)0.0479 (11)0.0001 (9)0.0058 (9)0.0156 (9)
C60.0368 (10)0.0360 (11)0.0435 (10)0.0049 (8)0.0011 (8)0.0143 (8)
C70.0419 (10)0.0398 (12)0.0527 (12)0.0024 (9)0.0124 (9)0.0205 (9)
C80.0647 (14)0.0459 (13)0.0417 (11)0.0098 (11)0.0027 (10)0.0156 (10)
C90.0503 (13)0.0419 (13)0.0681 (14)0.0068 (10)0.0119 (11)0.0077 (11)
C100.0434 (11)0.0351 (12)0.0542 (12)0.0013 (9)0.0025 (9)0.0193 (9)
C110.0592 (14)0.0509 (15)0.0694 (15)0.0054 (11)0.0040 (11)0.0267 (12)
C120.0638 (14)0.0429 (14)0.0744 (16)0.0062 (11)0.0035 (12)0.0204 (12)
C130.0758 (15)0.0457 (14)0.0672 (15)0.0036 (12)0.0123 (12)0.0279 (12)
C140.0731 (15)0.0398 (13)0.0736 (16)0.0078 (11)0.0065 (12)0.0158 (11)
Geometric parameters (Å, º) top
C1—C91.496 (3)C7—C101.525 (2)
C1—C101.513 (3)C7—H7A0.98
C1—C21.566 (3)C8—C91.309 (3)
C1—H1A0.98C8—H8A0.93
C2—C31.500 (3)C9—H9A0.93
C2—C61.564 (2)C10—C121.489 (3)
C2—H2A0.98C10—C111.491 (3)
C3—C41.312 (3)C11—C121.514 (3)
C3—H3A0.93C11—H11A0.97
C4—C51.470 (3)C11—H11B0.97
C4—H4A0.93C12—H12A0.97
C5—C131.503 (3)C12—H12B0.97
C5—C141.509 (3)C13—C141.483 (3)
C5—C61.532 (3)C13—H13A0.97
C6—C71.556 (3)C13—H13B0.97
C6—H6A0.98C14—H14B0.97
C7—C81.500 (3)C14—H14C0.97
C9—C1—C10100.07 (16)C9—C8—C7108.46 (17)
C9—C1—C2106.78 (17)C9—C8—H8A125.8
C10—C1—C299.49 (14)C7—C8—H8A125.8
C9—C1—H1A116C8—C9—C1107.59 (16)
C10—C1—H1A116C8—C9—H9A126.2
C2—C1—H1A116C1—C9—H9A126.2
C3—C2—C6103.53 (15)C12—C10—C1161.07 (14)
C3—C2—C1117.77 (17)C12—C10—C1125.94 (18)
C6—C2—C1102.59 (14)C11—C10—C1126.01 (17)
C3—C2—H2A110.8C12—C10—C7125.59 (17)
C6—C2—H2A110.8C11—C10—C7125.14 (17)
C1—C2—H2A110.8C1—C10—C794.78 (15)
C4—C3—C2112.80 (18)C10—C11—C1259.39 (13)
C4—C3—H3A123.6C10—C11—H11A117.8
C2—C3—H3A123.6C12—C11—H11A117.8
C3—C4—C5112.61 (19)C10—C11—H11B117.8
C3—C4—H4A123.7C12—C11—H11B117.8
C5—C4—H4A123.7H11A—C11—H11B115
C4—C5—C13122.29 (18)C10—C12—C1159.55 (14)
C4—C5—C14120.29 (18)C10—C12—H12A117.8
C13—C5—C1458.99 (13)C11—C12—H12A117.8
C4—C5—C6105.79 (15)C10—C12—H12B117.8
C13—C5—C6123.02 (17)C11—C12—H12B117.8
C14—C5—C6120.92 (17)H12A—C12—H12B115
C5—C6—C7118.11 (15)C14—C13—C560.73 (13)
C5—C6—C2105.17 (14)C14—C13—H13A117.7
C7—C6—C2102.28 (14)C5—C13—H13A117.7
C5—C6—H6A110.2C14—C13—H13B117.7
C7—C6—H6A110.2C5—C13—H13B117.7
C2—C6—H6A110.2H13A—C13—H13B114.8
C8—C7—C1099.26 (15)C13—C14—C560.28 (13)
C8—C7—C6107.61 (16)C13—C14—H14B117.7
C10—C7—C699.27 (14)C5—C14—H14B117.7
C8—C7—H7A116.1C13—C14—H14C117.7
C10—C7—H7A116.1C5—C14—H14C117.7
C6—C7—H7A116.1H14B—C14—H14C114.9
C9—C1—C2—C345.1 (2)C6—C7—C8—C970.4 (2)
C10—C1—C2—C3148.69 (16)C7—C8—C9—C10.2 (2)
C9—C1—C2—C667.80 (18)C10—C1—C9—C833.2 (2)
C10—C1—C2—C635.83 (17)C2—C1—C9—C870.0 (2)
C6—C2—C3—C40.8 (2)C9—C1—C10—C1291.6 (2)
C1—C2—C3—C4113.1 (2)C2—C1—C10—C12159.29 (19)
C2—C3—C4—C51.3 (3)C9—C1—C10—C11169.39 (19)
C3—C4—C5—C13150.9 (2)C2—C1—C10—C1181.5 (2)
C3—C4—C5—C14138.8 (2)C9—C1—C10—C749.82 (17)
C3—C4—C5—C62.8 (2)C2—C1—C10—C759.27 (16)
C4—C5—C6—C7110.17 (18)C8—C7—C10—C1292.4 (2)
C13—C5—C6—C737.6 (3)C6—C7—C10—C12157.93 (19)
C14—C5—C6—C7108.5 (2)C8—C7—C10—C11169.4 (2)
C4—C5—C6—C23.09 (19)C6—C7—C10—C1180.9 (2)
C13—C5—C6—C2150.86 (18)C8—C7—C10—C149.28 (17)
C14—C5—C6—C2138.22 (18)C6—C7—C10—C160.43 (16)
C3—C2—C6—C52.37 (18)C1—C10—C11—C12115.3 (2)
C1—C2—C6—C5125.38 (16)C7—C10—C11—C12115.1 (2)
C3—C2—C6—C7121.60 (17)C1—C10—C12—C11115.4 (2)
C1—C2—C6—C71.41 (17)C7—C10—C12—C11114.4 (2)
C5—C6—C7—C849.8 (2)C4—C5—C13—C14108.4 (2)
C2—C6—C7—C865.04 (17)C6—C5—C13—C14108.9 (2)
C5—C6—C7—C10152.68 (15)C4—C5—C14—C13111.8 (2)
C2—C6—C7—C1037.84 (17)C6—C5—C14—C13112.4 (2)
C10—C7—C8—C932.5 (2)

Experimental details

Crystal data
Chemical formulaC14H16
Mr184.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.4079 (5), 8.6355 (8), 10.7216 (10)
α, β, γ (°)68.488 (9), 81.625 (7), 73.351 (8)
V3)528.27 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.23 × 0.22 × 0.21
Data collection
DiffractometerOxford Diffraction Xcalibur S
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.775, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
3444, 2269, 1348
Rint0.024
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.168, 0.99
No. of reflections2269
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The work was undertaken with financial support from the Polish State Committee of Scientific Research, grant No. NN204271535.

References

First citationBrookings, D. C., Harrison, S. A., Whitby, R. J., Crombie, B. & Jones, R. V. H. (2001). Organometallics, 20, 4574–4583.  Web of Science CSD CrossRef CAS Google Scholar
First citationCaira, M. R., Bedekar, A. V. & Singh, V. (1995). J. Chem. Crystallogr. 25, 583–587.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaumann, T., Boese, R., Kozhushkov, S. I., Rauch, K. & de Meijere, A. (1997). Liebigs Ann. Chem. 10, 2047–2053.  CrossRef Google Scholar
First citationKhusnutdinov, R. I., Dokichev, V. A., Galeev, D. K., Asylguzhina, N. F., Sultanov, S. Z. & Dzhemilev, U. M. (1988). Russ. Chem. Bull. 37, 1932–1935.  CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilcox, C. F. & Craig, R. R. (1961). J. Am. Chem. Soc. 83, 3866–3871.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds