organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Cyano­benzyl­­idene)furan-2-carbohydrazide monohydrate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 7 June 2010; accepted 10 June 2010; online 16 June 2010)

In the title compound, C13H9N3O2·H2O, the dihedral angle between the aromatic rings is 10.7 (4)° and an intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, the components are linked by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For a related structure and background references, see: Li et al. (2010[Li, Y.-F., Zhang, F.-G. & Jian, F.-F. (2010). Acta Cryst. E66, o1471.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9N3O2·H2O

  • Mr = 257.25

  • Monoclinic, P 21 /n

  • a = 7.0501 (14) Å

  • b = 14.295 (3) Å

  • c = 12.640 (3) Å

  • β = 103.38 (3)°

  • V = 1239.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 11389 measured reflections

  • 2834 independent reflections

  • 1568 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.135

  • S = 0.98

  • 2834 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 2.33 2.692 (2) 106
N1—H1A⋯O3 0.86 2.07 2.920 (2) 169
O3—H3B⋯N3i 1.00 (4) 1.99 (4) 2.980 (2) 172 (3)
O3—H3C⋯O2ii 0.88 (3) 1.98 (3) 2.848 (2) 171 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For a related structure and background references, see: Li et al. (2010).

Experimental top

A mixture of 4-formylbenzonitrile (0.1 mol), and furan-2-carbohydrazide (0.1 mol) was stirred in refluxing ethanol (20 mL) for 2 h to afford the title compound (0.090 mol, yield 90%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.97 Å, and with Uiso=1.2–1.5Ueq.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids.
N'-(4-Cyanobenzylidene)furan-2-carbohydrazide monohydrate top
Crystal data top
C13H9N3O2·H2OF(000) = 536
Mr = 257.25Dx = 1.379 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1568 reflections
a = 7.0501 (14) Åθ = 2.7–25.5°
b = 14.295 (3) ŵ = 0.10 mm1
c = 12.640 (3) ÅT = 293 K
β = 103.38 (3)°Block, colorless
V = 1239.3 (4) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1568 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ϕ and ω scansh = 89
11389 measured reflectionsk = 1818
2834 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0694P)2]
where P = (Fo2 + 2Fc2)/3
2834 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C13H9N3O2·H2OV = 1239.3 (4) Å3
Mr = 257.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0501 (14) ŵ = 0.10 mm1
b = 14.295 (3) ÅT = 293 K
c = 12.640 (3) Å0.22 × 0.20 × 0.18 mm
β = 103.38 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1568 reflections with I > 2σ(I)
11389 measured reflectionsRint = 0.043
2834 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.24 e Å3
2834 reflectionsΔρmin = 0.16 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.2572 (2)0.42473 (10)0.51829 (12)0.0431 (4)
N10.2142 (2)0.34390 (9)0.45997 (12)0.0440 (4)
H1A0.17040.34580.39060.053*
O10.10154 (18)0.19128 (9)0.33670 (10)0.0526 (4)
C60.2239 (3)0.50009 (12)0.46228 (15)0.0461 (5)
H6A0.17470.49640.38750.055*
C40.1844 (3)0.17816 (13)0.44486 (15)0.0442 (5)
O30.0883 (2)0.37589 (11)0.22607 (12)0.0654 (5)
C130.3865 (3)0.85907 (14)0.65549 (17)0.0548 (5)
O20.3075 (2)0.25365 (9)0.61179 (11)0.0595 (4)
C120.3138 (3)0.60216 (13)0.62661 (16)0.0525 (5)
H12A0.32180.54970.67090.063*
C70.2620 (3)0.59186 (12)0.51417 (15)0.0420 (4)
C50.2414 (3)0.26093 (12)0.51272 (15)0.0436 (4)
C80.2453 (3)0.67132 (13)0.44979 (16)0.0518 (5)
H8A0.20690.66550.37460.062*
C110.3534 (3)0.68908 (13)0.67294 (16)0.0551 (5)
H11A0.38870.69520.74820.066*
C100.3405 (3)0.76786 (12)0.60708 (16)0.0453 (5)
C20.0589 (3)0.10477 (13)0.29261 (18)0.0566 (6)
H2B0.00030.09310.22000.068*
N30.4234 (3)0.93164 (12)0.69148 (17)0.0721 (6)
C10.1133 (3)0.03943 (15)0.36854 (18)0.0654 (6)
H1B0.10060.02490.35880.078*
C90.2850 (3)0.75903 (13)0.49571 (16)0.0521 (5)
H9A0.27410.81180.45160.062*
C30.1943 (3)0.08674 (13)0.46686 (18)0.0617 (6)
H3A0.24490.05930.53420.074*
H3B0.025 (5)0.438 (3)0.208 (3)0.156 (14)*
H3C0.005 (4)0.337 (2)0.197 (3)0.120 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0504 (9)0.0360 (8)0.0404 (9)0.0034 (7)0.0056 (7)0.0056 (7)
N10.0572 (9)0.0360 (8)0.0346 (9)0.0018 (7)0.0023 (7)0.0016 (6)
O10.0708 (9)0.0435 (7)0.0389 (8)0.0040 (7)0.0030 (6)0.0018 (6)
C60.0560 (11)0.0405 (10)0.0384 (11)0.0028 (9)0.0037 (8)0.0023 (8)
C40.0466 (10)0.0473 (11)0.0366 (11)0.0005 (9)0.0052 (8)0.0017 (8)
O30.0897 (11)0.0468 (9)0.0497 (9)0.0047 (9)0.0044 (8)0.0021 (7)
C130.0600 (12)0.0438 (11)0.0576 (13)0.0031 (10)0.0073 (10)0.0013 (10)
O20.0829 (10)0.0532 (8)0.0369 (8)0.0059 (7)0.0026 (7)0.0064 (6)
C120.0739 (14)0.0408 (10)0.0418 (11)0.0062 (10)0.0114 (10)0.0024 (8)
C70.0435 (10)0.0381 (10)0.0428 (11)0.0050 (8)0.0072 (8)0.0002 (8)
C50.0451 (10)0.0468 (11)0.0377 (11)0.0064 (9)0.0074 (8)0.0064 (8)
C80.0653 (12)0.0467 (11)0.0392 (12)0.0028 (9)0.0038 (9)0.0003 (8)
C110.0768 (14)0.0483 (11)0.0369 (11)0.0042 (10)0.0064 (10)0.0036 (9)
C100.0469 (10)0.0383 (10)0.0490 (12)0.0020 (8)0.0077 (8)0.0048 (8)
C20.0708 (14)0.0460 (11)0.0488 (12)0.0087 (10)0.0052 (10)0.0062 (9)
N30.0868 (14)0.0448 (11)0.0786 (14)0.0037 (10)0.0064 (11)0.0129 (9)
C10.0812 (15)0.0401 (11)0.0656 (15)0.0037 (11)0.0021 (12)0.0018 (10)
C90.0625 (12)0.0396 (10)0.0513 (13)0.0008 (9)0.0075 (10)0.0067 (9)
C30.0757 (14)0.0430 (11)0.0575 (14)0.0020 (10)0.0030 (11)0.0125 (9)
Geometric parameters (Å, º) top
N2—C61.281 (2)C12—C111.374 (3)
N2—N11.3664 (18)C12—C71.391 (3)
N1—C51.352 (2)C12—H12A0.9300
N1—H1A0.8600C7—C81.386 (2)
O1—C21.361 (2)C8—C91.383 (2)
O1—C41.370 (2)C8—H8A0.9300
C6—C71.464 (2)C11—C101.391 (3)
C6—H6A0.9300C11—H11A0.9300
C4—C31.335 (2)C10—C91.377 (3)
C4—C51.462 (2)C2—C11.331 (3)
O3—H3B1.00 (4)C2—H2B0.9300
O3—H3C0.87 (3)C1—C31.414 (3)
C13—N31.139 (2)C1—H1B0.9300
C13—C101.445 (3)C9—H9A0.9300
O2—C51.235 (2)C3—H3A0.9300
C6—N2—N1115.07 (15)C9—C8—C7121.00 (18)
C5—N1—N2119.16 (15)C9—C8—H8A119.5
C5—N1—H1A120.4C7—C8—H8A119.5
N2—N1—H1A120.4C12—C11—C10119.89 (18)
C2—O1—C4106.68 (15)C12—C11—H11A120.1
N2—C6—C7121.01 (17)C10—C11—H11A120.1
N2—C6—H6A119.5C9—C10—C11120.09 (17)
C7—C6—H6A119.5C9—C10—C13119.90 (17)
C3—C4—O1109.38 (16)C11—C10—C13120.01 (18)
C3—C4—C5132.55 (18)C1—C2—O1110.06 (19)
O1—C4—C5118.07 (15)C1—C2—H2B125.0
H3B—O3—H3C102 (3)O1—C2—H2B125.0
N3—C13—C10178.5 (2)C2—C1—C3106.77 (19)
C11—C12—C7120.69 (17)C2—C1—H1B126.6
C11—C12—H12A119.7C3—C1—H1B126.6
C7—C12—H12A119.7C10—C9—C8119.63 (17)
C8—C7—C12118.66 (16)C10—C9—H9A120.2
C8—C7—C6119.31 (17)C8—C9—H9A120.2
C12—C7—C6122.03 (16)C4—C3—C1107.11 (19)
O2—C5—N1123.42 (16)C4—C3—H3A126.4
O2—C5—C4120.96 (16)C1—C3—H3A126.4
N1—C5—C4115.60 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.332.692 (2)106
N1—H1A···O30.862.072.920 (2)169
O3—H3B···N3i1.00 (4)1.99 (4)2.980 (2)172 (3)
O3—H3C···O2ii0.88 (3)1.98 (3)2.848 (2)171 (3)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H9N3O2·H2O
Mr257.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.0501 (14), 14.295 (3), 12.640 (3)
β (°) 103.38 (3)
V3)1239.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11389, 2834, 1568
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 0.98
No. of reflections2834
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.16

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.332.692 (2)106
N1—H1A···O30.862.072.920 (2)169
O3—H3B···N3i1.00 (4)1.99 (4)2.980 (2)172 (3)
O3—H3C···O2ii0.88 (3)1.98 (3)2.848 (2)171 (3)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x1/2, y+1/2, z1/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F., Zhang, F.-G. & Jian, F.-F. (2010). Acta Cryst. E66, o1471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds