organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{[4-(4-Meth­­oxy­benzene­sulfonamido)­phen­yl]sulfon­yl}acetamide

aDepartment of Chemistry, University of Gujrat, H. H. Campus, Gujrat 50700, Pakistan, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr, iukhan.gcu@gmail.com

(Received 16 June 2010; accepted 20 June 2010; online 23 June 2010)

In the title compound, C15H16N2O6S2, the dihedral angle between the benzene rings is 83.2 (3)°. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O inter­action. In the crystal structure, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds and additional stabilization is provided by weak C—H⋯π inter­actions.

Related literature

For previous studies on the synthesis of sulfonamide derivatives with phenyl glycine, see: Ashfaq et al. (2009[Ashfaq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Saeed-ul-Hassan, S. (2009). Acta Cryst. E65, o1180.], 2010[Ashfaq, M., Khan, I. U., Arshad, M. N., Ahmad, H. & Asghar, M. N. (2010). Acta Cryst. E66, o299.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O6S2

  • Mr = 384.44

  • Monoclinic, P 21 /c

  • a = 5.3651 (10) Å

  • b = 20.551 (3) Å

  • c = 15.034 (2) Å

  • β = 94.040 (7)°

  • V = 1653.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.25 × 0.08 × 0.07 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 13678 measured reflections

  • 3771 independent reflections

  • 1608 reflections with I > 2σ(I)

  • Rint = 0.114

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.189

  • S = 0.89

  • 3771 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 2.09 2.932 (5) 168
N2—H2⋯O5ii 0.86 2.26 3.071 (5) 157
C13—H13⋯O2 0.93 2.35 2.986 (6) 126
C15—H15C⋯O6ii 0.96 2.45 3.348 (7) 156
C15—H15BCg1iii 0.96 2.79 3.722 (6) 164
C15—H15ACg2iii 0.96 2.79 3.589 (6) 141
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulphacetamide sodium is an antibiotic which is being used for eye infections. Because the antiobiotics lose their efficacy after long term used, so there is a need to derivatize them to get better therapeutic result. In this paper, a new derivative of it is being reported. Previously this drug has also been derivatized by other researchers (Ashfaq et al., 2009, 2010). Here we present the crystal structure of the title compound (I), (Fig. 1).

In (I), the benzene rings (C1–C6) and (C8–C13) are twisted with a dihedral angle of 83.2 (3) ° to each other. Molecular conformation is stabilized by intramolecular C–H···O interactions. Intermolecular N—H···O and C—H···O hydrogen bonds and C—H···π interactions contribute to the stabilization of the crystal structure (Table 1, Fig. 2).

Related literature top

For previous studies on the synthesis of sulfonamide derivatives with phenyl glycine, see: Ashfaq et al. (2009, 2010).

Experimental top

Sodium sulphacetamide (0.5 g, 2.32 mmol) was taken in 50 ml round bottom flask and dissolved in 20 ml of distilled water. Then, methoxy benzene sulfonyl chloride (0.46 g, 2.32 mmol) was added with continuous stirring at ambient temperature. The pH of this solution was strictly maintained between 8 and 9 by using NaHCO3 (3 M). The consumption of suspended methoxy benzene sulfonyl chloride was an indication of reaction completion. Then pH was adjusted to 2–3 using HCl (3 N). The precipitates formed were filtered, washed three to four times with distilled water and recrystallised using methanol to yield colourless rods of (I).

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.86 Å, Uiso = 1.2Ueq(N) for NH, 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and 0.96 Å, Uiso = 1.5Ueq(C) for CH3 hydrogen atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of (I) viewed down a axis. H atoms not participating in hydrogen bonding have been omitted for clarity.
N-{[4-(4-Methoxybenzenesulfonamido)phenyl]sulfonyl}acetamide top
Crystal data top
C15H16N2O6S2F(000) = 800
Mr = 384.44Dx = 1.544 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1463 reflections
a = 5.3651 (10) Åθ = 2.9–20.1°
b = 20.551 (3) ŵ = 0.36 mm1
c = 15.034 (2) ÅT = 296 K
β = 94.040 (7)°Rod, colourless
V = 1653.5 (4) Å30.25 × 0.08 × 0.07 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1608 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.114
Graphite monochromatorθmax = 28.4°, θmin = 3.3°
phi and ω scansh = 77
13678 measured reflectionsk = 2726
3771 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.068P)2]
where P = (Fo2 + 2Fc2)/3
3771 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C15H16N2O6S2V = 1653.5 (4) Å3
Mr = 384.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.3651 (10) ŵ = 0.36 mm1
b = 20.551 (3) ÅT = 296 K
c = 15.034 (2) Å0.25 × 0.08 × 0.07 mm
β = 94.040 (7)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1608 reflections with I > 2σ(I)
13678 measured reflectionsRint = 0.114
3771 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 0.89Δρmax = 0.83 e Å3
3771 reflectionsΔρmin = 0.32 e Å3
226 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.3465 (3)0.17871 (7)0.68802 (9)0.0373 (5)
S20.7590 (2)0.14262 (6)1.14309 (8)0.0290 (4)
O10.7672 (11)0.0692 (3)0.5765 (3)0.082 (2)
O20.1176 (7)0.16711 (19)0.7264 (2)0.0455 (14)
O30.3551 (7)0.2208 (2)0.6128 (2)0.0515 (16)
O40.8828 (6)0.19627 (17)1.1877 (2)0.0386 (11)
O50.5388 (6)0.11632 (18)1.1764 (2)0.0377 (11)
O60.7458 (7)0.00642 (18)1.0809 (3)0.0444 (14)
N10.5446 (8)0.2099 (2)0.7634 (2)0.0348 (14)
N20.9779 (7)0.0863 (2)1.1487 (3)0.0335 (14)
C10.4677 (10)0.1033 (3)0.6585 (3)0.0373 (19)
C20.6748 (11)0.1020 (3)0.6078 (4)0.051 (2)
C30.7658 (13)0.0438 (4)0.5824 (4)0.060 (3)
C40.6569 (12)0.0140 (4)0.6055 (4)0.055 (2)
C50.4498 (13)0.0129 (3)0.6561 (4)0.054 (2)
C60.3601 (11)0.0463 (3)0.6810 (4)0.0450 (19)
C70.671 (2)0.1301 (4)0.5999 (5)0.102 (4)
C80.5896 (9)0.1915 (2)0.8531 (3)0.0274 (16)
C90.7968 (9)0.2181 (3)0.8989 (3)0.0345 (17)
C100.8521 (9)0.2034 (3)0.9879 (3)0.0353 (17)
C110.6938 (9)0.1611 (2)1.0304 (3)0.0278 (16)
C120.4918 (9)0.1342 (2)0.9844 (3)0.0322 (17)
C130.4361 (10)0.1492 (3)0.8956 (3)0.0345 (17)
C140.9434 (9)0.0225 (3)1.1177 (3)0.0310 (17)
C151.1613 (10)0.0206 (3)1.1364 (4)0.0426 (17)
H10.633000.241800.746100.0420*
H21.123000.096901.172300.0400*
H2A0.750100.140600.591600.0610*
H30.904700.042900.548800.0720*
H50.374100.051300.672600.0650*
H60.220800.047500.714500.0540*
H7A0.667100.132700.663500.1520*
H7B0.775800.164000.579400.1520*
H7C0.504900.135000.572700.1520*
H90.900000.246200.869800.0420*
H100.991900.221201.019000.0420*
H120.390300.105401.013100.0380*
H130.296700.131100.864700.0420*
H15A1.123600.063201.112900.0640*
H15B1.198900.023501.199700.0640*
H15C1.302800.003201.108800.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0361 (8)0.0443 (9)0.0310 (7)0.0051 (6)0.0015 (6)0.0047 (6)
S20.0303 (7)0.0313 (7)0.0256 (6)0.0004 (5)0.0039 (5)0.0046 (5)
O10.110 (4)0.070 (4)0.066 (3)0.033 (3)0.003 (3)0.024 (3)
O20.032 (2)0.054 (3)0.050 (2)0.0047 (18)0.0006 (17)0.0042 (19)
O30.061 (3)0.058 (3)0.034 (2)0.008 (2)0.0071 (19)0.0161 (19)
O40.045 (2)0.034 (2)0.0362 (19)0.0048 (17)0.0013 (17)0.0108 (17)
O50.0298 (19)0.050 (2)0.0343 (19)0.0003 (17)0.0090 (15)0.0001 (17)
O60.034 (2)0.035 (2)0.063 (3)0.0026 (17)0.0055 (18)0.0050 (19)
N10.040 (2)0.036 (3)0.028 (2)0.006 (2)0.0013 (19)0.0099 (19)
N20.027 (2)0.038 (3)0.034 (2)0.0021 (19)0.0081 (18)0.001 (2)
C10.033 (3)0.048 (4)0.030 (3)0.001 (3)0.005 (2)0.002 (2)
C20.046 (4)0.056 (4)0.050 (4)0.010 (3)0.003 (3)0.011 (3)
C30.050 (4)0.083 (5)0.048 (4)0.006 (4)0.010 (3)0.018 (4)
C40.054 (4)0.067 (5)0.042 (3)0.019 (4)0.014 (3)0.015 (3)
C50.072 (5)0.045 (4)0.043 (3)0.007 (3)0.010 (3)0.002 (3)
C60.048 (3)0.052 (4)0.035 (3)0.003 (3)0.004 (3)0.003 (3)
C70.189 (10)0.054 (5)0.060 (5)0.039 (6)0.002 (6)0.005 (4)
C80.029 (3)0.025 (3)0.028 (2)0.004 (2)0.001 (2)0.005 (2)
C90.036 (3)0.033 (3)0.035 (3)0.014 (2)0.007 (2)0.005 (2)
C100.033 (3)0.036 (3)0.037 (3)0.004 (2)0.003 (2)0.004 (2)
C110.033 (3)0.026 (3)0.025 (2)0.002 (2)0.006 (2)0.002 (2)
C120.034 (3)0.029 (3)0.033 (3)0.009 (2)0.001 (2)0.003 (2)
C130.031 (3)0.039 (3)0.033 (3)0.004 (2)0.002 (2)0.004 (2)
C140.026 (3)0.037 (3)0.030 (3)0.004 (2)0.002 (2)0.003 (2)
C150.037 (3)0.041 (3)0.050 (3)0.013 (3)0.004 (2)0.002 (3)
Geometric parameters (Å, º) top
S1—O21.413 (4)C8—C131.384 (7)
S1—O31.427 (4)C8—C91.379 (7)
S1—N11.629 (4)C9—C101.383 (7)
S1—C11.750 (6)C10—C111.401 (7)
S2—O41.430 (4)C11—C121.361 (7)
S2—O51.422 (3)C12—C131.382 (6)
S2—N21.647 (4)C14—C151.478 (8)
S2—C111.747 (5)C2—H2A0.9300
O1—C41.365 (10)C3—H30.9300
O1—C71.408 (10)C5—H50.9300
O6—C141.207 (6)C6—H60.9300
N1—C81.405 (5)C7—H7A0.9600
N2—C141.399 (7)C7—H7B0.9600
N1—H10.8600C7—H7C0.9600
N2—H20.8600C9—H90.9300
C1—C61.359 (9)C10—H100.9300
C1—C21.391 (8)C12—H120.9300
C2—C31.357 (10)C13—H130.9300
C3—C41.379 (11)C15—H15A0.9600
C4—C51.390 (9)C15—H15B0.9600
C5—C61.370 (9)C15—H15C0.9600
O2—S1—O3120.2 (2)S2—C11—C12120.1 (3)
O2—S1—N1109.0 (2)C10—C11—C12120.5 (4)
O2—S1—C1107.7 (3)C11—C12—C13120.7 (4)
O3—S1—N1104.9 (2)C8—C13—C12119.4 (5)
O3—S1—C1107.6 (2)O6—C14—C15125.5 (5)
N1—S1—C1106.8 (2)N2—C14—C15114.5 (4)
O4—S2—O5119.9 (2)O6—C14—N2120.0 (5)
O4—S2—N2102.2 (2)C1—C2—H2A120.00
O4—S2—C11110.0 (2)C3—C2—H2A120.00
O5—S2—N2108.8 (2)C2—C3—H3119.00
O5—S2—C11108.0 (2)C4—C3—H3119.00
N2—S2—C11107.2 (2)C4—C5—H5121.00
C4—O1—C7119.0 (6)C6—C5—H5121.00
S1—N1—C8128.4 (3)C1—C6—H6119.00
S2—N2—C14124.4 (3)C5—C6—H6119.00
S1—N1—H1116.00O1—C7—H7A109.00
C8—N1—H1116.00O1—C7—H7B109.00
S2—N2—H2118.00O1—C7—H7C109.00
C14—N2—H2118.00H7A—C7—H7B110.00
S1—C1—C2118.8 (5)H7A—C7—H7C110.00
S1—C1—C6121.9 (4)H7B—C7—H7C110.00
C2—C1—C6119.3 (6)C8—C9—H9120.00
C1—C2—C3119.2 (6)C10—C9—H9120.00
C2—C3—C4121.4 (6)C9—C10—H10121.00
O1—C4—C5124.7 (7)C11—C10—H10121.00
C3—C4—C5119.5 (7)C11—C12—H12120.00
O1—C4—C3115.8 (6)C13—C12—H12120.00
C4—C5—C6118.3 (6)C8—C13—H13120.00
C1—C6—C5122.3 (6)C12—C13—H13120.00
C9—C8—C13120.2 (4)C14—C15—H15A109.00
N1—C8—C9116.8 (4)C14—C15—H15B109.00
N1—C8—C13123.0 (4)C14—C15—H15C109.00
C8—C9—C10120.5 (5)H15A—C15—H15B109.00
C9—C10—C11118.8 (5)H15A—C15—H15C109.00
S2—C11—C10119.4 (4)H15B—C15—H15C110.00
O2—S1—N1—C842.8 (5)S2—N2—C14—O63.0 (7)
O3—S1—N1—C8172.7 (4)S2—N2—C14—C15175.4 (4)
C1—S1—N1—C873.3 (5)S1—C1—C2—C3178.1 (5)
O2—S1—C1—C2171.0 (4)C6—C1—C2—C30.4 (8)
O2—S1—C1—C66.7 (5)S1—C1—C6—C5178.2 (5)
O3—S1—C1—C240.0 (5)C2—C1—C6—C50.6 (9)
O3—S1—C1—C6137.6 (5)C1—C2—C3—C40.2 (9)
N1—S1—C1—C272.1 (5)C2—C3—C4—O1179.5 (6)
N1—S1—C1—C6110.2 (5)C2—C3—C4—C50.2 (10)
O4—S2—N2—C14176.6 (4)O1—C4—C5—C6179.6 (6)
O5—S2—N2—C1448.9 (5)C3—C4—C5—C60.3 (9)
C11—S2—N2—C1467.7 (4)C4—C5—C6—C10.5 (9)
O4—S2—C11—C1030.0 (5)N1—C8—C9—C10178.9 (5)
O4—S2—C11—C12150.4 (4)C13—C8—C9—C100.7 (8)
O5—S2—C11—C10162.5 (4)N1—C8—C13—C12179.2 (4)
O5—S2—C11—C1217.9 (4)C9—C8—C13—C120.4 (8)
N2—S2—C11—C1080.4 (4)C8—C9—C10—C110.0 (8)
N2—S2—C11—C1299.2 (4)C9—C10—C11—S2179.4 (4)
C7—O1—C4—C3178.1 (6)C9—C10—C11—C121.1 (8)
C7—O1—C4—C51.2 (9)S2—C11—C12—C13179.0 (4)
S1—N1—C8—C9169.1 (4)C10—C11—C12—C131.4 (7)
S1—N1—C8—C1311.4 (7)C11—C12—C13—C80.7 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.092.932 (5)168
N2—H2···O5ii0.862.263.071 (5)157
C13—H13···O20.932.352.986 (6)126
C15—H15C···O6ii0.962.453.348 (7)156
C15—H15B···Cg1iii0.962.793.722 (6)164
C15—H15A···Cg2iii0.962.793.589 (6)141
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC15H16N2O6S2
Mr384.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.3651 (10), 20.551 (3), 15.034 (2)
β (°) 94.040 (7)
V3)1653.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.25 × 0.08 × 0.07
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13678, 3771, 1608
Rint0.114
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.189, 0.89
No. of reflections3771
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.092.932 (5)168
N2—H2···O5ii0.862.263.071 (5)157
C13—H13···O20.932.352.986 (6)126
C15—H15C···O6ii0.962.453.348 (7)156
C15—H15B···Cg1iii0.962.793.722 (6)164
C15—H15A···Cg2iii0.962.793.589 (6)141
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+2, y, z+2.
 

Acknowledgements

GM greatly acknowledge the Vice Chancellor, University of Gujrat, Professor Dr Nizam Uddin, for creating a healthy research environment in the University of Gujrat.

References

First citationAshfaq, M., Khan, I. U., Arshad, M. N., Ahmad, H. & Asghar, M. N. (2010). Acta Cryst. E66, o299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAshfaq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Saeed-ul-Hassan, S. (2009). Acta Cryst. E65, o1180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds