organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(7-Meth­­oxy-1-naphth­yl)aceto­nitrile

aCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 18 June 2010; accepted 23 June 2010; online 30 June 2010)

The mol­ecule of the title compound, C13H11NO, is almost planar (r.m.s. deviation = 0.013 Å), apart from the cyanide group, for which the C and N atoms deviate from the mean plane of the other atoms by 0.341 (3) and 0.571 (4) Å, respectively. In the crystal, weak aromatic ππ stacking [centroid–centroid distance = 3.758 (3) Å] may help to stabilize the structure.

Related literature

For background to the use of naphthyl­ethyl acetonitrile as an inter­mediate for the synthesisis of N-naphthyl­ethyl amide derivatives, see: Depreux & Lesieur (1994[Depreux, P. & Lesieur, D. (1994). J. Med. Chem. 37, 3231-3239.]). For further synthetic details, see: Yous & Andrieux (1992[Yous, S. & Andrieux, J. (1992). J. Med. Chem. 35, 1484-1486.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NO

  • Mr = 197.23

  • Monoclinic, P 21 /n

  • a = 7.5110 (15) Å

  • b = 9.6170 (19) Å

  • c = 14.731 (3) Å

  • β = 101.03 (3)°

  • V = 1044.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.976, Tmax = 0.992

  • 1971 measured reflections

  • 1897 independent reflections

  • 1045 reflections with I > 2σ(I)

  • Rint = 0.011

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.163

  • S = 1.00

  • 1897 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Naphthylethyl acetonitrile is an important pharmaceutical intermediate for synthesizing N-naphthylethyl amide derivatives which was evaluated as melatonin receptor ligands (Depreux & Lesieur, 1994). We report herein the crystal structure of the title compound, (I).

In the molecule of the title compound (Fig 1), the bond lengths and angles are within normal ranges. Rings A (C3—C7/C12), B (C8—C12)are, of course, planar, and they are oriented at dihedral angle A/B= 1.10 (3) °. So, they are nearly coplanar. No classical hydrogen bond was found in the molecule. The ππ contacts between the naphthalene rings, Cg1—Cg2i [symmetry codes: -x,1 - y,1 - z, where Cg1 and Cg2 are centroids of the rings A (C3—C7/C10/C12), and B (C8—C12), respectively] may further stabilize the structure, with centroid-centroid distances of 3.758 (3) Å.

Related literature top

For background to the use of naphthylethyl acetonitrile as an intermediate for the synthesisis of N-naphthylethyl amide derivatives, see: Depreux & Lesieur (1994). For further synthetic details, see: Yous & Andrieux (1992).

Experimental top

(7-Methoxy-1-naphthyl)acetic acid was reacted with thionyl chloride in CHCl3, and the crude acid chloride was treated with aqueous ammonia to produce (7-Methoxy-1-naphthyl)acetamide. Dehydration of this amide with trifluoroacetic anhydride in THF at 273 K gave the title compound (Yous & Andrieux, 1992). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution (yield; 66%, m.p. 353 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and C—H = 0.96 and 0.97 Å for methyl and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of title molecule.
2-(7-Methoxy-1-naphthyl)acetonitrile top
Crystal data top
C13H11NOF(000) = 416
Mr = 197.23Dx = 1.254 Mg m3
Monoclinic, P21/nMelting point: 353 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.5110 (15) ÅCell parameters from 25 reflections
b = 9.6170 (19) Åθ = 9–13°
c = 14.731 (3) ŵ = 0.08 mm1
β = 101.03 (3)°T = 293 K
V = 1044.4 (4) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1045 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.011
Graphite monochromatorθmax = 25.3°, θmin = 2.5°
ω/2θ scansh = 98
Absorption correction: ψ scan
(North et al., 1968)
k = 110
Tmin = 0.976, Tmax = 0.992l = 017
1971 measured reflections3 standard reflections every 200 reflections
1897 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.069P)2]
where P = (Fo2 + 2Fc2)/3
1897 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C13H11NOV = 1044.4 (4) Å3
Mr = 197.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5110 (15) ŵ = 0.08 mm1
b = 9.6170 (19) ÅT = 293 K
c = 14.731 (3) Å0.30 × 0.20 × 0.10 mm
β = 101.03 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1045 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.011
Tmin = 0.976, Tmax = 0.9923 standard reflections every 200 reflections
1971 measured reflections intensity decay: 1%
1897 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.00Δρmax = 0.14 e Å3
1897 reflectionsΔρmin = 0.14 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.8616 (3)0.2547 (2)0.13823 (13)0.0718 (6)
N0.7349 (5)0.1342 (3)0.3297 (2)0.1076 (12)
C10.7327 (4)0.0786 (3)0.2623 (2)0.0691 (9)
C20.7316 (4)0.0085 (3)0.17484 (17)0.0565 (7)
H2A0.84710.03800.15500.068*
H2B0.63760.06200.18420.068*
C30.6992 (3)0.1069 (3)0.09873 (18)0.0484 (7)
C40.6435 (4)0.2412 (3)0.1174 (2)0.0622 (8)
H4A0.62280.27270.17820.075*
C50.6171 (4)0.3319 (3)0.0472 (3)0.0716 (9)
H5A0.57940.42270.06130.086*
C60.6466 (4)0.2874 (3)0.0411 (2)0.0685 (9)
H6A0.62930.34860.08760.082*
C70.7028 (4)0.1504 (3)0.06461 (19)0.0552 (8)
C80.7346 (4)0.1027 (3)0.1570 (2)0.0675 (9)
H8A0.72000.16350.20420.081*
C90.7857 (4)0.0299 (4)0.1779 (2)0.0685 (9)
H9A0.80600.05960.23910.082*
C100.8086 (4)0.1236 (3)0.10760 (19)0.0564 (7)
C110.7816 (3)0.0820 (3)0.01827 (18)0.0495 (7)
H11A0.79790.14480.02750.059*
C120.7285 (3)0.0571 (3)0.00618 (18)0.0471 (7)
C130.8857 (4)0.3548 (3)0.0708 (2)0.0723 (9)
H13A0.92330.44150.10070.108*
H13B0.97680.32290.03800.108*
H13C0.77330.36770.02800.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0897 (16)0.0689 (14)0.0570 (12)0.0037 (12)0.0148 (11)0.0088 (11)
N0.177 (4)0.085 (2)0.062 (2)0.005 (2)0.024 (2)0.0025 (17)
C10.092 (2)0.064 (2)0.0507 (18)0.0084 (18)0.0111 (16)0.0041 (16)
C20.0636 (19)0.0525 (17)0.0549 (17)0.0034 (14)0.0150 (14)0.0016 (14)
C30.0441 (15)0.0478 (16)0.0553 (17)0.0072 (13)0.0142 (13)0.0041 (13)
C40.065 (2)0.0532 (18)0.070 (2)0.0012 (15)0.0164 (15)0.0030 (16)
C50.074 (2)0.0490 (18)0.097 (3)0.0035 (16)0.0285 (19)0.0043 (18)
C60.073 (2)0.057 (2)0.084 (2)0.0069 (16)0.0352 (18)0.0222 (17)
C70.0506 (17)0.0552 (19)0.0636 (19)0.0093 (14)0.0210 (14)0.0135 (15)
C80.074 (2)0.073 (2)0.062 (2)0.0102 (18)0.0293 (16)0.0217 (17)
C90.078 (2)0.082 (2)0.0499 (17)0.0113 (19)0.0234 (16)0.0027 (17)
C100.0572 (18)0.0583 (18)0.0552 (18)0.0043 (14)0.0141 (14)0.0006 (15)
C110.0491 (16)0.0508 (17)0.0519 (17)0.0058 (13)0.0182 (13)0.0061 (13)
C120.0384 (15)0.0485 (16)0.0565 (17)0.0098 (12)0.0142 (12)0.0069 (13)
C130.078 (2)0.0579 (19)0.079 (2)0.0039 (16)0.0087 (18)0.0028 (17)
Geometric parameters (Å, º) top
O—C101.372 (3)C6—H6A0.9300
O—C131.419 (3)C7—C81.413 (4)
N—C11.130 (4)C7—C121.417 (3)
C1—C21.456 (4)C8—C91.350 (4)
C2—C31.522 (3)C8—H8A0.9300
C2—H2A0.9700C9—C101.407 (4)
C2—H2B0.9700C9—H9A0.9300
C3—C41.369 (4)C10—C111.353 (4)
C3—C121.422 (3)C11—C121.422 (4)
C4—C51.396 (4)C11—H11A0.9300
C4—H4A0.9300C13—H13A0.9600
C5—C61.347 (4)C13—H13B0.9600
C5—H5A0.9300C13—H13C0.9600
C6—C71.406 (4)
C10—O—C13117.4 (2)C8—C7—C12118.8 (3)
N—C1—C2179.1 (4)C9—C8—C7120.9 (3)
C1—C2—C3113.2 (2)C9—C8—H8A119.5
C1—C2—H2A108.9C7—C8—H8A119.5
C3—C2—H2A108.9C8—C9—C10120.4 (3)
C1—C2—H2B108.9C8—C9—H9A119.8
C3—C2—H2B108.9C10—C9—H9A119.8
H2A—C2—H2B107.8C11—C10—O124.9 (3)
C4—C3—C12119.7 (3)C11—C10—C9120.6 (3)
C4—C3—C2121.6 (3)O—C10—C9114.5 (3)
C12—C3—C2118.7 (2)C10—C11—C12120.5 (3)
C3—C4—C5121.5 (3)C10—C11—H11A119.8
C3—C4—H4A119.2C12—C11—H11A119.8
C5—C4—H4A119.2C7—C12—C3118.3 (3)
C6—C5—C4119.8 (3)C7—C12—C11118.7 (2)
C6—C5—H5A120.1C3—C12—C11123.0 (2)
C4—C5—H5A120.1O—C13—H13A109.5
C5—C6—C7121.4 (3)O—C13—H13B109.5
C5—C6—H6A119.3H13A—C13—H13B109.5
C7—C6—H6A119.3O—C13—H13C109.5
C6—C7—C8121.9 (3)H13A—C13—H13C109.5
C6—C7—C12119.3 (3)H13B—C13—H13C109.5

Experimental details

Crystal data
Chemical formulaC13H11NO
Mr197.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.5110 (15), 9.6170 (19), 14.731 (3)
β (°) 101.03 (3)
V3)1044.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.976, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
1971, 1897, 1045
Rint0.011
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.163, 1.00
No. of reflections1897
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Center of Testing and Analysis of Nanjing University for support.

References

First citationDepreux, P. & Lesieur, D. (1994). J. Med. Chem. 37, 3231–3239.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYous, S. & Andrieux, J. (1992). J. Med. Chem. 35, 1484–1486.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds