organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(6-Chloro-2-methyl-4-phenyl­quinolin-3-yl)-3-phenyl­prop-2-en-1-one

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 19 June 2010; accepted 19 June 2010; online 26 June 2010)

In the title compound, C25H18ClNO, the conformation about the C=C double bond is E. Significant twists are evident in the mol­ecule, with the benzene ring forming a dihedral angle of 53.92 (11)° with the quinolinyl residue. Further, the chalcone residue is approximately perpendicular to the quinolinyl residue [Cq—Cq—Cc—Oc torsion angle = −104.5 (3)°, where q = quinolinyl and c = chalcone]. In the crystal, the presence of C—H⋯O and C—H⋯π inter­actions leads to supra­molecular layers lying parallel to ([\overline{1}]02).

Related literature

For the biological activity of quinoline derivatives, see: Campbell et al. (1998[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem. 31, 1031-1035.]). For the biological activity of chalcone derivatives, see: Chen et al. (2001[Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374-2377.]); Zi & Simoneau (2005[Zi, X. & Simoneau, A. R. (2005). Cancer Res. 65, 3479-3486.]). For a related structure, see: Prasath et al. (2010[Prasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.]).

[Scheme 1]

Experimental

Crystal data
  • C25H18ClNO

  • Mr = 383.85

  • Monoclinic, P 21 /c

  • a = 9.9250 (9) Å

  • b = 11.1001 (9) Å

  • c = 17.4651 (15) Å

  • β = 97.250 (1)°

  • V = 1908.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.46 × 0.30 × 0.26 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.536, Tmax = 1.000

  • 16152 measured reflections

  • 3948 independent reflections

  • 3030 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.188

  • S = 1.09

  • 3948 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,C10–C12,C17,C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.48 3.315 (3) 146
C21—H21⋯Cg1ii 0.95 2.71 3.459 (3) 137
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

Both quinolines (Campbell et al., 1998) and open chain flavonoids, i.e. chalcones (Chen et al., 2001; Zi & Simoneau, 2005), are known to possess a wide range of biological activities. Herein, in continuation of previous studies (Prasath et al., 2010), we describe the crystal structure of a molecule containing both quinoline and chalcone residues, namely, the title compound, (I).

In (I), Fig. 1, the quinolinyl residue is planar [r.m.s. = 0.041 Å] with both the benzene ring and chalcone residue being twisted out of the plane. The dihedral angle formed between the quinolinyl and benzene (C20–C25) rings is 53.92 (11) °. In the case of the chalcone residue, the twist is best illustrated by the O1–C9–C10–C11 torsion angle of -104.5 (3) °. There are also twists within the chalcone residues as exemplified by the C7–C8–C9–O1 and C7–C8–C9–C10 torsion angles of -163.7 (3) and 14.7 (4) °, respectively. The conformation about the C7C8 bond [1.340 (4) Å] is E.

Supramolecular layers parallel to (1 0 2) are evident in the crystal structure. These, Fig. 2 and Table 1, are stabilized by C–H···O contacts and C–H···π interactions where the π-system is the NC5 ring of the quinolinyl residue.

Related literature top

For the biological activity of quinoline derivatives, see: Campbell et al. (1998). For the biological activity of chalcone derivatives, see: Chen et al. (2001); Zi & Simoneau (2005). For a related structure, see: Prasath et al. (2010).

Experimental top

A mixture of 3-acetyl-6-chloro-2-methyl-4-phenylquinoline (0.01 M), benzaldehyde (0.0 1M) and a catalytic amount of KOH in distilled ethanol (50 ml) was stirred for about 12 h. The resulting mixture was concentrated to remove ethanol, poured on to ice and neutralized with dilute acetic acid. The solid that formed was filtered, dried, purified by column chromatography using a 1:1 mixture of ethyl acetate and petroleum ether, and recrystallized using ethyl acetate to produce colourless blocks of (I); Yield: 65% and m.pt: 400 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular array in (I) highlighting the C–H···O and C–H···π interactions as orange and purple dashed lines, respectively.
(2E)-1-(6-Chloro-2-methyl-4-phenylquinolin-3-yl)-3-phenylprop-2-en-1-one top
Crystal data top
C25H18ClNOF(000) = 800
Mr = 383.85Dx = 1.336 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4382 reflections
a = 9.9250 (9) Åθ = 2.2–28.1°
b = 11.1001 (9) ŵ = 0.22 mm1
c = 17.4651 (15) ÅT = 100 K
β = 97.250 (1)°Block, colourless
V = 1908.7 (3) Å30.46 × 0.30 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3948 independent reflections
Radiation source: fine-focus sealed tube3030 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.536, Tmax = 1.000k = 1313
16152 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0925P)2 + 1.6015P]
where P = (Fo2 + 2Fc2)/3
3948 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C25H18ClNOV = 1908.7 (3) Å3
Mr = 383.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9250 (9) ŵ = 0.22 mm1
b = 11.1001 (9) ÅT = 100 K
c = 17.4651 (15) Å0.46 × 0.30 × 0.26 mm
β = 97.250 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3948 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3030 reflections with I > 2σ(I)
Tmin = 0.536, Tmax = 1.000Rint = 0.079
16152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.09Δρmax = 0.85 e Å3
3948 reflectionsΔρmin = 0.49 e Å3
254 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.10119 (8)0.00729 (6)0.39598 (4)0.0310 (2)
O10.13396 (19)0.68284 (16)0.58922 (12)0.0270 (5)
N10.3459 (2)0.4751 (2)0.42881 (14)0.0225 (5)
C10.4920 (3)0.5159 (2)0.77131 (17)0.0218 (6)
C20.4665 (3)0.5785 (2)0.83726 (17)0.0254 (6)
H20.39270.63350.83430.031*
C30.5471 (3)0.5616 (2)0.90671 (18)0.0275 (6)
H30.52780.60400.95130.033*
C40.6565 (3)0.4825 (2)0.91160 (18)0.0284 (7)
H40.71180.47060.95950.034*
C50.6847 (3)0.4212 (2)0.84662 (18)0.0291 (7)
H50.75990.36770.84970.035*
C60.6033 (3)0.4376 (2)0.77700 (17)0.0254 (6)
H60.62330.39520.73250.030*
C70.4062 (3)0.5249 (2)0.69742 (17)0.0219 (6)
H70.43260.47810.65620.026*
C80.2941 (3)0.5922 (2)0.68141 (17)0.0232 (6)
H80.26330.63650.72240.028*
C90.2165 (3)0.6014 (2)0.60506 (17)0.0218 (6)
C100.2406 (3)0.5114 (2)0.54359 (16)0.0196 (6)
C110.1878 (2)0.3965 (2)0.54427 (16)0.0196 (6)
C120.2102 (2)0.3183 (2)0.48211 (16)0.0192 (6)
C130.1502 (3)0.2022 (2)0.47167 (16)0.0211 (6)
H130.09110.17350.50630.025*
C140.1783 (3)0.1328 (2)0.41150 (17)0.0237 (6)
C150.2654 (3)0.1713 (2)0.35909 (17)0.0255 (6)
H150.28480.11990.31840.031*
C160.3223 (3)0.2835 (2)0.36714 (17)0.0242 (6)
H160.38170.31000.33200.029*
C170.2931 (3)0.3600 (2)0.42726 (16)0.0206 (6)
C180.3167 (3)0.5479 (2)0.48365 (17)0.0215 (6)
C190.3681 (3)0.6752 (2)0.48052 (18)0.0269 (6)
H19A0.43660.67940.44480.040*
H19B0.40880.70010.53210.040*
H19C0.29230.72900.46260.040*
C200.1112 (3)0.3561 (2)0.60680 (16)0.0210 (6)
C210.0006 (3)0.4208 (2)0.62611 (17)0.0238 (6)
H210.03100.49000.59690.029*
C220.0675 (3)0.3855 (3)0.68711 (18)0.0288 (7)
H220.14270.43080.69990.035*
C230.0251 (3)0.2841 (3)0.72961 (18)0.0306 (7)
H230.06970.26070.77230.037*
C240.0828 (3)0.2169 (2)0.70960 (18)0.0293 (7)
H240.10990.14580.73770.035*
C250.1511 (3)0.2522 (2)0.64943 (17)0.0250 (6)
H250.22560.20590.63670.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0373 (4)0.0150 (3)0.0400 (5)0.0062 (3)0.0013 (3)0.0048 (3)
O10.0212 (10)0.0136 (9)0.0452 (13)0.0019 (7)0.0001 (9)0.0028 (8)
N10.0180 (11)0.0158 (11)0.0339 (14)0.0000 (9)0.0036 (9)0.0010 (9)
C10.0213 (13)0.0120 (12)0.0325 (16)0.0028 (10)0.0048 (11)0.0020 (10)
C20.0247 (14)0.0163 (13)0.0354 (17)0.0002 (10)0.0042 (12)0.0017 (11)
C30.0313 (16)0.0166 (13)0.0342 (17)0.0025 (11)0.0026 (12)0.0023 (11)
C40.0320 (16)0.0165 (13)0.0348 (17)0.0024 (11)0.0034 (13)0.0032 (11)
C50.0248 (15)0.0170 (13)0.0442 (19)0.0037 (11)0.0011 (13)0.0019 (12)
C60.0255 (14)0.0172 (13)0.0340 (17)0.0015 (11)0.0060 (12)0.0009 (11)
C70.0221 (14)0.0118 (11)0.0326 (16)0.0023 (10)0.0070 (11)0.0002 (11)
C80.0245 (14)0.0155 (12)0.0302 (16)0.0010 (10)0.0056 (11)0.0036 (11)
C90.0162 (13)0.0122 (12)0.0371 (16)0.0043 (10)0.0038 (11)0.0005 (11)
C100.0153 (12)0.0151 (12)0.0279 (15)0.0016 (10)0.0004 (10)0.0016 (10)
C110.0126 (12)0.0154 (12)0.0298 (15)0.0007 (9)0.0014 (10)0.0019 (10)
C120.0115 (12)0.0158 (12)0.0298 (15)0.0020 (9)0.0005 (10)0.0012 (10)
C130.0156 (12)0.0153 (12)0.0320 (16)0.0011 (10)0.0018 (11)0.0017 (11)
C140.0237 (14)0.0134 (12)0.0326 (16)0.0009 (10)0.0023 (11)0.0009 (11)
C150.0283 (15)0.0171 (13)0.0310 (16)0.0054 (11)0.0035 (12)0.0025 (11)
C160.0196 (13)0.0209 (13)0.0324 (16)0.0011 (11)0.0039 (11)0.0009 (11)
C170.0139 (12)0.0148 (12)0.0329 (16)0.0013 (9)0.0017 (10)0.0014 (11)
C180.0163 (13)0.0143 (12)0.0332 (16)0.0002 (10)0.0002 (11)0.0014 (11)
C190.0246 (14)0.0149 (13)0.0416 (18)0.0036 (11)0.0059 (12)0.0009 (12)
C200.0191 (13)0.0138 (12)0.0294 (15)0.0042 (9)0.0003 (11)0.0011 (10)
C210.0182 (13)0.0177 (13)0.0348 (17)0.0018 (10)0.0013 (11)0.0017 (11)
C220.0206 (14)0.0254 (14)0.0409 (18)0.0062 (11)0.0066 (12)0.0082 (13)
C230.0322 (16)0.0280 (15)0.0329 (17)0.0155 (13)0.0085 (13)0.0038 (12)
C240.0374 (17)0.0172 (13)0.0319 (17)0.0087 (12)0.0007 (13)0.0029 (12)
C250.0273 (14)0.0134 (12)0.0334 (17)0.0018 (10)0.0000 (12)0.0012 (11)
Geometric parameters (Å, º) top
Cl1—C141.739 (3)C12—C171.417 (4)
O1—C91.228 (3)C12—C131.422 (3)
N1—C181.314 (4)C13—C141.360 (4)
N1—C171.379 (3)C13—H130.9500
C1—C21.396 (4)C14—C151.403 (4)
C1—C61.399 (4)C15—C161.368 (4)
C1—C71.457 (4)C15—H150.9500
C2—C31.379 (4)C16—C171.409 (4)
C2—H20.9500C16—H160.9500
C3—C41.391 (4)C18—C191.506 (3)
C3—H30.9500C19—H19A0.9800
C4—C51.382 (4)C19—H19B0.9800
C4—H40.9500C19—H19C0.9800
C5—C61.384 (4)C20—C211.399 (4)
C5—H50.9500C20—C251.402 (4)
C6—H60.9500C21—C221.381 (4)
C7—C81.340 (4)C21—H210.9500
C7—H70.9500C22—C231.384 (4)
C8—C91.457 (4)C22—H220.9500
C8—H80.9500C23—C241.385 (4)
C9—C101.508 (4)C23—H230.9500
C10—C111.380 (3)C24—C251.377 (4)
C10—C181.425 (4)C24—H240.9500
C11—C121.429 (4)C25—H250.9500
C11—C201.477 (4)
C18—N1—C17117.8 (2)C13—C14—C15122.3 (2)
C2—C1—C6118.3 (3)C13—C14—Cl1119.8 (2)
C2—C1—C7123.4 (2)C15—C14—Cl1117.8 (2)
C6—C1—C7118.3 (3)C16—C15—C14119.4 (3)
C3—C2—C1120.9 (3)C16—C15—H15120.3
C3—C2—H2119.6C14—C15—H15120.3
C1—C2—H2119.6C15—C16—C17120.3 (3)
C2—C3—C4120.1 (3)C15—C16—H16119.8
C2—C3—H3119.9C17—C16—H16119.8
C4—C3—H3119.9N1—C17—C16117.3 (2)
C5—C4—C3119.9 (3)N1—C17—C12122.7 (2)
C5—C4—H4120.1C16—C17—C12119.9 (2)
C3—C4—H4120.1N1—C18—C10123.1 (2)
C4—C5—C6120.0 (3)N1—C18—C19116.4 (3)
C4—C5—H5120.0C10—C18—C19120.5 (2)
C6—C5—H5120.0C18—C19—H19A109.5
C5—C6—C1120.8 (3)C18—C19—H19B109.5
C5—C6—H6119.6H19A—C19—H19B109.5
C1—C6—H6119.6C18—C19—H19C109.5
C8—C7—C1126.9 (3)H19A—C19—H19C109.5
C8—C7—H7116.6H19B—C19—H19C109.5
C1—C7—H7116.6C21—C20—C25118.3 (3)
C7—C8—C9124.0 (3)C21—C20—C11121.4 (2)
C7—C8—H8118.0C25—C20—C11120.4 (2)
C9—C8—H8118.0C22—C21—C20120.9 (3)
O1—C9—C8121.3 (2)C22—C21—H21119.6
O1—C9—C10119.3 (3)C20—C21—H21119.6
C8—C9—C10119.4 (2)C21—C22—C23120.1 (3)
C11—C10—C18120.5 (2)C21—C22—H22120.0
C11—C10—C9120.8 (2)C23—C22—H22120.0
C18—C10—C9118.7 (2)C22—C23—C24119.7 (3)
C10—C11—C12117.3 (2)C22—C23—H23120.2
C10—C11—C20121.2 (2)C24—C23—H23120.2
C12—C11—C20121.5 (2)C25—C24—C23120.7 (3)
C17—C12—C13118.6 (2)C25—C24—H24119.7
C17—C12—C11118.3 (2)C23—C24—H24119.7
C13—C12—C11123.0 (2)C24—C25—C20120.4 (3)
C14—C13—C12119.3 (3)C24—C25—H25119.8
C14—C13—H13120.4C20—C25—H25119.8
C12—C13—H13120.4
C6—C1—C2—C31.5 (4)C13—C14—C15—C161.5 (4)
C7—C1—C2—C3176.5 (3)Cl1—C14—C15—C16176.6 (2)
C1—C2—C3—C40.8 (4)C14—C15—C16—C170.3 (4)
C2—C3—C4—C50.2 (4)C18—N1—C17—C16178.5 (2)
C3—C4—C5—C60.6 (4)C18—N1—C17—C120.3 (4)
C4—C5—C6—C10.1 (4)C15—C16—C17—N1175.5 (2)
C2—C1—C6—C51.1 (4)C15—C16—C17—C123.3 (4)
C7—C1—C6—C5177.0 (3)C13—C12—C17—N1174.2 (2)
C2—C1—C7—C80.2 (4)C11—C12—C17—N14.0 (4)
C6—C1—C7—C8178.2 (3)C13—C12—C17—C164.5 (4)
C1—C7—C8—C9176.9 (2)C11—C12—C17—C16177.2 (2)
C7—C8—C9—O1163.7 (3)C17—N1—C18—C104.0 (4)
C7—C8—C9—C1014.7 (4)C17—N1—C18—C19176.0 (2)
O1—C9—C10—C11104.5 (3)C11—C10—C18—N13.2 (4)
C8—C9—C10—C1177.1 (3)C9—C10—C18—N1178.2 (2)
O1—C9—C10—C1874.1 (3)C11—C10—C18—C19176.8 (2)
C8—C9—C10—C18104.3 (3)C9—C10—C18—C191.9 (4)
C18—C10—C11—C121.3 (4)C10—C11—C20—C2154.1 (4)
C9—C10—C11—C12177.3 (2)C12—C11—C20—C21126.0 (3)
C18—C10—C11—C20178.7 (2)C10—C11—C20—C25124.8 (3)
C9—C10—C11—C202.7 (4)C12—C11—C20—C2555.2 (3)
C10—C11—C12—C174.6 (3)C25—C20—C21—C222.0 (4)
C20—C11—C12—C17175.4 (2)C11—C20—C21—C22176.9 (2)
C10—C11—C12—C13173.6 (2)C20—C21—C22—C230.7 (4)
C20—C11—C12—C136.5 (4)C21—C22—C23—C241.4 (4)
C17—C12—C13—C142.7 (4)C22—C23—C24—C252.1 (4)
C11—C12—C13—C14179.1 (2)C23—C24—C25—C200.8 (4)
C12—C13—C14—C150.3 (4)C21—C20—C25—C241.2 (4)
C12—C13—C14—Cl1177.80 (19)C11—C20—C25—C24177.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C10–C12,C17,C18 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.483.315 (3)146
C21—H21···Cg1ii0.952.713.459 (3)137
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC25H18ClNO
Mr383.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.9250 (9), 11.1001 (9), 17.4651 (15)
β (°) 97.250 (1)
V3)1908.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.46 × 0.30 × 0.26
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.536, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16152, 3948, 3030
Rint0.079
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.188, 1.09
No. of reflections3948
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.49

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C10–C12,C17,C18 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.483.315 (3)146
C21—H21···Cg1ii0.952.713.459 (3)137
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.

Acknowledgements

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem. 31, 1031–1035.  CrossRef Web of Science Google Scholar
First citationChen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPrasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar
First citationZi, X. & Simoneau, A. R. (2005). Cancer Res. 65, 3479–3486.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds