organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3-Bis[(4-chloro­phen­yl)sulfan­yl]-1-methyl­piperidin-2-one

aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bInstituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil, cChemistry Institute, Universidade de São Paulo, 05508-000 São Paulo-SP, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

(Received 20 June 2010; accepted 23 June 2010; online 30 June 2010)

The piperidone ring in the title compound, C18H17Cl2NOS2, has a distorted half-chair conformation. The S-bound benzene rings are approximately perpendicular to and splayed out of the mean plane through the piperidone ring [dihedral angles = 71.86 (13) and 46.94 (11)°]. In the crystal, C—H⋯O inter­actions link the mol­ecules into [010] supra­molecular chains with a helical topology. C—H⋯Cl and C—H⋯π inter­actions are also present.

Related literature

For background to β-thiocarbonyl compounds, see: Vinhato (2007[Vinhato, E. (2007). PhD Thesis, University of São Paulo, Brazil.]); Olivato et al. (2009[Olivato, P. R., Domingues, N. L. C., Mondino, M. G., Tormena, C. F., Rittner, R. & Dal Colle, M. (2009). J. Mol. Struct. 920, 393-400.]). For related structures, see: Zukerman-Schpector et al. (2006[Zukerman-Schpector, J., Maganhi, S., Olivato, P. R., Vinhato, E. & Cerqueira, C. R. (2006). Z. Kristallogr. New Cryst. Struct. 221, 165-166.], 2008[Zukerman-Schpector, J., Olivato, P. R., Cerqueira, C. R. Jr, Vinhato, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o835-o836.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For further synthetic details, see: Hashmat & McDermott (2002[Hashmat, A. M. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271-6273.]); Zoretic & Soja (1976[Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587-3589.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17Cl2NOS2

  • Mr = 398.37

  • Monoclinic, P 21 /n

  • a = 8.0313 (2) Å

  • b = 9.7460 (2) Å

  • c = 24.2623 (7) Å

  • β = 94.0767 (12)°

  • V = 1894.28 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 290 K

  • 0.33 × 0.30 × 0.29 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.82, Tmax = 0.85

  • 12888 measured reflections

  • 3288 independent reflections

  • 2778 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.121

  • S = 1.05

  • 3288 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.93 2.32 3.218 (3) 164
C11—H11⋯Cl2ii 0.93 2.83 3.708 (3) 157
C19—H19a⋯Cg1iii 0.96 2.95 3.676 (3) 133
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our on-going research on the conformational and electronic interactions in β-thio-carbonyl compounds, e.g. N,N-diethyl-2-[(4'-substituted) phenylthio]acetamides, N-methoxy-N-methyl-2-[(4'-substituted) phenylthio]propanamides, and 1-methyl-3-phenylsulfonyl-2-piperidone, utilizing spectroscopic, theoretical and X-ray diffraction methods (Vinhato, 2007; Olivato et al., 2009; Zukerman-Schpector et al. 2008), the title compound, (I), was synthesized and its crystal structure determined.

In (I), Fig. 1, the piperidone ring has a distorted half-chair conformation: the ring-puckering parameters are q2 = 0.453 (2) Å, q3 = -0.271 (2) Å, QT = 0.528 (3) Å, ϕ2 = 37.4 (3) ° (Cremer & Pople, 1975). While the S2-bound benzene ring is orientated to be almost perpendicular to the plane through the piperidone ring [dihedral angle = 71.86 (13) °], the S1-bond benzene ring is somewhat splayed with respect to the other rings, forming dihedral angles of 46.94 (11) and 61.68 (13) ° with those through the piperidone and S2-bound benzene rings, respectively.

Supramolecular helical chains aligned along the b axis dominate the crystal packing, Fig. 2 and Table 1, and these are sustained in the crystal structure by C–H···Cl and C–H···π interactions, Table 1.

Related literature top

For background to β-thio-carbonyl compounds, see: Vinhato (2007); Olivato et al. (2009). For related structures, see: Zukerman-Schpector et al. (2006, 2008). For ring conformational analysis, see: Cremer & Pople (1975). For further synthetic details, see: Hashmat & McDermott (2002); Zoretic & Soja (1976).

Experimental top

Firstly, 4-chlorothiophenol (5.8 g, 40 mmol) was reacted with bromine (1.1 ml, 40 mmol) in dichloromethane (250 ml) on hydrated silica gel support (25 g of SiO2 and 12 ml of water) to give 4-chlorophenyl disulfide (5.3 g, yield = 93%). A yellow solid was obtained after filtration and evaporation without further purification (Hashmat & McDermott, 2002). 1-Methyl-2-piperidinone (2.0 g, 18 mmol) was added dropwise to a cooled (195 K) solution of hexamethylphosphoramide (HMPA) (3.3 ml, 18 mmol), diisopropylamine (2.6 ml, 18 mmol) and butyllithium (11.5 ml, 18 mmol) in THF (60 ml). After 20 minutes, 4-chlorophenyl disulfide (5.3 g, 18 mmol) dissolved in THF (10 ml) was added dropwise to the enolate solution (Zoretic & Soja, 1976). After stirring for 3 h at 195 K, water (80 ml) was added at room temperature and extraction with chloroform was performed. The organic layer was dried over anhydrous sodium sulfate. After evaporation of solvent, a crude solid was obtained. Purification through flash chromatography with a solution of hexane and ethyl acetate in a 7:3 ratio give the pure product (2.8 g, yield = 35%). Irregular lumps of (I) were obtained by vapour diffusion of n-hexane into a chloroform solution held at 283 K; m.p. 372–373 K. IR (cm-1): ν(C=O) 1663. NMR (CDCl3, p.p.m.): δ 1.93–1.95 (2H, m), 1.97–1.99 (2H, m), 2.91 (3H, s), 3.21 (2H, triplet, J = 6.0 Hz), 7.31–7.33 (4H, m, Aryl-H), 7.55–7.57 (4H, m, Aryl-H). Analysis found: C 54.33, H 4.30, N 3.39%. C18H17OCl2NS2 requires: C 54.27, H 4.30, N 3.52%.

Refinement top

The H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Supramolecular chain in (I) mediated by C–H···O interactions (orange dashed lines). The chain with helical topology is aligned along the b axis.
3,3-Bis[(4-chlorophenyl)sulfanyl]-1-methylpiperidin-2-one top
Crystal data top
C18H17Cl2NOS2F(000) = 824
Mr = 398.37Dx = 1.397 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10679 reflections
a = 8.0313 (2) Åθ = 2.9–27.5°
b = 9.7460 (2) ŵ = 0.57 mm1
c = 24.2623 (7) ÅT = 290 K
β = 94.0767 (12)°Irregular, colourless
V = 1894.28 (8) Å30.33 × 0.30 × 0.29 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3288 independent reflections
Radiation source: sealed tube2778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
CCD rotation images scansθmax = 25.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.82, Tmax = 0.85k = 1111
12888 measured reflectionsl = 2826
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.758P]
where P = (Fo2 + 2Fc2)/3
3288 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C18H17Cl2NOS2V = 1894.28 (8) Å3
Mr = 398.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0313 (2) ŵ = 0.57 mm1
b = 9.7460 (2) ÅT = 290 K
c = 24.2623 (7) Å0.33 × 0.30 × 0.29 mm
β = 94.0767 (12)°
Data collection top
Nonius KappaCCD
diffractometer
3288 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2778 reflections with I > 2σ(I)
Tmin = 0.82, Tmax = 0.85Rint = 0.049
12888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
3288 reflectionsΔρmin = 0.38 e Å3
218 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.3322 (3)0.3195 (2)0.66893 (9)0.0514 (5)
C30.4451 (2)0.2265 (2)0.70636 (9)0.0490 (5)
C40.3506 (3)0.1218 (2)0.73838 (9)0.0527 (5)
H4A0.31890.04480.71450.063*
H4B0.42230.08760.76920.063*
C50.1959 (3)0.1856 (3)0.75971 (10)0.0629 (6)
H5A0.14070.11990.78230.075*
H5B0.22640.26500.78230.075*
C60.0808 (3)0.2277 (3)0.71127 (11)0.0697 (7)
H6A0.03090.14640.69400.084*
H6B0.00850.28350.72430.084*
C70.6208 (2)0.2649 (2)0.81264 (9)0.0520 (5)
C80.7382 (3)0.1601 (2)0.81591 (10)0.0557 (5)
H80.78410.12960.78400.067*
C90.7876 (3)0.1008 (2)0.86615 (11)0.0632 (6)
H90.86590.03030.86810.076*
C100.7204 (3)0.1464 (3)0.91293 (11)0.0678 (7)
C110.6026 (3)0.2500 (3)0.91080 (11)0.0756 (7)
H110.55720.28000.94290.091*
C120.5534 (3)0.3082 (3)0.86065 (10)0.0673 (7)
H120.47370.37760.85890.081*
C130.4783 (3)0.0506 (2)0.61552 (9)0.0572 (5)
C140.4608 (3)0.0901 (3)0.61981 (11)0.0687 (6)
H140.50930.13600.65050.082*
C150.3712 (4)0.1629 (3)0.57846 (13)0.0814 (8)
H150.36000.25760.58110.098*
C160.2998 (3)0.0938 (4)0.53379 (12)0.0798 (8)
C170.3157 (4)0.0450 (4)0.52858 (12)0.0869 (9)
H170.26600.09000.49790.104*
C180.4061 (4)0.1180 (3)0.56924 (11)0.0744 (7)
H180.41880.21230.56570.089*
C190.0614 (4)0.3812 (3)0.62912 (13)0.0835 (8)
H19A0.07250.47780.63620.125*
H19B0.05300.35450.63140.125*
H19C0.09540.36120.59280.125*
O10.3934 (2)0.40242 (17)0.63843 (7)0.0719 (5)
Cl10.78388 (14)0.07472 (10)0.97627 (4)0.1129 (3)
Cl20.19021 (13)0.18374 (14)0.48074 (4)0.1289 (4)
S10.56494 (8)0.35278 (6)0.75025 (3)0.0615 (2)
S20.60276 (7)0.14457 (7)0.66590 (3)0.0638 (2)
N10.1666 (2)0.3052 (2)0.67012 (8)0.0589 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0504 (12)0.0463 (11)0.0566 (12)0.0034 (9)0.0033 (9)0.0035 (9)
C30.0412 (11)0.0466 (11)0.0588 (12)0.0035 (8)0.0002 (9)0.0038 (9)
C40.0553 (12)0.0434 (11)0.0585 (13)0.0066 (9)0.0020 (10)0.0008 (9)
C50.0609 (14)0.0606 (13)0.0688 (15)0.0116 (11)0.0150 (11)0.0024 (11)
C60.0474 (13)0.0693 (15)0.0928 (19)0.0050 (11)0.0079 (12)0.0031 (13)
C70.0425 (11)0.0500 (11)0.0621 (12)0.0023 (9)0.0056 (9)0.0108 (10)
C80.0446 (11)0.0576 (12)0.0646 (14)0.0018 (9)0.0013 (10)0.0100 (10)
C90.0493 (12)0.0538 (13)0.0846 (17)0.0044 (10)0.0083 (11)0.0089 (12)
C100.0654 (15)0.0707 (15)0.0645 (15)0.0047 (12)0.0161 (12)0.0043 (12)
C110.0682 (16)0.0962 (19)0.0615 (15)0.0109 (14)0.0027 (12)0.0207 (14)
C120.0574 (14)0.0725 (15)0.0699 (16)0.0178 (12)0.0097 (11)0.0204 (12)
C130.0451 (11)0.0698 (14)0.0566 (13)0.0102 (10)0.0043 (9)0.0087 (10)
C140.0633 (15)0.0689 (16)0.0735 (16)0.0100 (12)0.0019 (12)0.0054 (12)
C150.0790 (19)0.0766 (17)0.090 (2)0.0058 (14)0.0131 (15)0.0209 (15)
C160.0612 (16)0.109 (2)0.0690 (17)0.0075 (15)0.0079 (13)0.0283 (16)
C170.086 (2)0.112 (2)0.0606 (16)0.0151 (17)0.0100 (14)0.0096 (16)
C180.0828 (18)0.0781 (17)0.0609 (15)0.0126 (14)0.0043 (13)0.0028 (12)
C190.0666 (17)0.0893 (19)0.0905 (19)0.0192 (14)0.0237 (14)0.0028 (15)
O10.0693 (11)0.0663 (10)0.0790 (11)0.0096 (8)0.0020 (9)0.0199 (9)
Cl10.1408 (8)0.1145 (7)0.0781 (5)0.0100 (6)0.0305 (5)0.0123 (5)
Cl20.1044 (7)0.1885 (11)0.0944 (6)0.0460 (7)0.0104 (5)0.0639 (7)
S10.0640 (4)0.0479 (3)0.0702 (4)0.0118 (2)0.0113 (3)0.0013 (2)
S20.0407 (3)0.0814 (4)0.0688 (4)0.0036 (3)0.0002 (3)0.0123 (3)
N10.0470 (10)0.0599 (11)0.0686 (12)0.0035 (8)0.0055 (8)0.0025 (9)
Geometric parameters (Å, º) top
C2—O11.222 (3)C10—C111.382 (4)
C2—N11.340 (3)C10—Cl11.731 (3)
C2—C31.533 (3)C11—C121.375 (4)
C3—C41.518 (3)C11—H110.9300
C3—S21.839 (2)C12—H120.9300
C3—S11.851 (2)C13—C141.383 (4)
C4—C51.513 (3)C13—C181.391 (3)
C4—H4A0.9700C13—S21.777 (2)
C4—H4B0.9700C14—C151.388 (4)
C5—C61.500 (3)C14—H140.9300
C5—H5A0.9700C15—C161.367 (4)
C5—H5B0.9700C15—H150.9300
C6—N11.463 (3)C16—C171.366 (4)
C6—H6A0.9700C16—Cl21.743 (3)
C6—H6B0.9700C17—C181.380 (4)
C7—C121.385 (3)C17—H170.9300
C7—C81.388 (3)C18—H180.9300
C7—S11.769 (2)C19—N11.460 (3)
C8—C91.381 (3)C19—H19A0.9600
C8—H80.9300C19—H19B0.9600
C9—C101.365 (4)C19—H19C0.9600
C9—H90.9300
O1—C2—N1121.6 (2)C9—C10—Cl1119.9 (2)
O1—C2—C3120.21 (19)C11—C10—Cl1119.0 (2)
N1—C2—C3118.18 (19)C12—C11—C10119.2 (2)
C4—C3—C2113.84 (17)C12—C11—H11120.4
C4—C3—S2111.66 (14)C10—C11—H11120.4
C2—C3—S2109.95 (14)C11—C12—C7120.9 (2)
C4—C3—S1114.26 (15)C11—C12—H12119.5
C2—C3—S1102.08 (13)C7—C12—H12119.5
S2—C3—S1104.26 (10)C14—C13—C18119.3 (2)
C5—C4—C3110.55 (17)C14—C13—S2120.93 (19)
C5—C4—H4A109.5C18—C13—S2119.6 (2)
C3—C4—H4A109.5C13—C14—C15120.2 (3)
C5—C4—H4B109.5C13—C14—H14119.9
C3—C4—H4B109.5C15—C14—H14119.9
H4A—C4—H4B108.1C16—C15—C14119.2 (3)
C6—C5—C4108.67 (19)C16—C15—H15120.4
C6—C5—H5A110.0C14—C15—H15120.4
C4—C5—H5A110.0C17—C16—C15121.6 (3)
C6—C5—H5B110.0C17—C16—Cl2118.4 (3)
C4—C5—H5B110.0C15—C16—Cl2119.9 (3)
H5A—C5—H5B108.3C16—C17—C18119.5 (3)
N1—C6—C5112.44 (19)C16—C17—H17120.2
N1—C6—H6A109.1C18—C17—H17120.2
C5—C6—H6A109.1C17—C18—C13120.1 (3)
N1—C6—H6B109.1C17—C18—H18119.9
C5—C6—H6B109.1C13—C18—H18119.9
H6A—C6—H6B107.8N1—C19—H19A109.5
C12—C7—C8118.7 (2)N1—C19—H19B109.5
C12—C7—S1118.79 (17)H19A—C19—H19B109.5
C8—C7—S1122.34 (17)N1—C19—H19C109.5
C9—C8—C7120.6 (2)H19A—C19—H19C109.5
C9—C8—H8119.7H19B—C19—H19C109.5
C7—C8—H8119.7C7—S1—C3105.06 (10)
C10—C9—C8119.5 (2)C13—S2—C3102.48 (9)
C10—C9—H9120.3C2—N1—C19117.4 (2)
C8—C9—H9120.3C2—N1—C6125.80 (19)
C9—C10—C11121.1 (2)C19—N1—C6116.7 (2)
O1—C2—C3—C4175.5 (2)C14—C15—C16—C170.6 (4)
N1—C2—C3—C43.4 (3)C14—C15—C16—Cl2178.7 (2)
O1—C2—C3—S249.4 (2)C15—C16—C17—C180.0 (5)
N1—C2—C3—S2129.55 (18)Cl2—C16—C17—C18178.1 (2)
O1—C2—C3—S160.9 (2)C16—C17—C18—C130.9 (4)
N1—C2—C3—S1120.22 (18)C14—C13—C18—C171.1 (4)
C2—C3—C4—C540.9 (2)S2—C13—C18—C17177.0 (2)
S2—C3—C4—C5166.11 (15)C12—C7—S1—C3113.91 (19)
S1—C3—C4—C575.9 (2)C8—C7—S1—C370.55 (19)
C3—C4—C5—C663.6 (2)C4—C3—S1—C729.71 (18)
C4—C5—C6—N148.4 (3)C2—C3—S1—C7153.07 (14)
C12—C7—C8—C90.4 (3)S2—C3—S1—C792.45 (12)
S1—C7—C8—C9175.18 (17)C14—C13—S2—C3104.0 (2)
C7—C8—C9—C100.3 (3)C18—C13—S2—C380.2 (2)
C8—C9—C10—C110.6 (4)C4—C3—S2—C1367.21 (17)
C8—C9—C10—Cl1178.95 (18)C2—C3—S2—C1360.15 (16)
C9—C10—C11—C120.3 (4)S1—C3—S2—C13168.93 (11)
Cl1—C10—C11—C12179.3 (2)O1—C2—N1—C196.9 (3)
C10—C11—C12—C70.3 (4)C3—C2—N1—C19172.0 (2)
C8—C7—C12—C110.7 (4)O1—C2—N1—C6168.6 (2)
S1—C7—C12—C11175.0 (2)C3—C2—N1—C612.5 (3)
C18—C13—C14—C150.4 (4)C5—C6—N1—C211.0 (3)
S2—C13—C14—C15176.2 (2)C5—C6—N1—C19164.5 (2)
C13—C14—C15—C160.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12.
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.323.218 (3)164
C11—H11···Cl2ii0.932.833.708 (3)157
C19—H19a···Cg1iii0.962.953.676 (3)133
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H17Cl2NOS2
Mr398.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)290
a, b, c (Å)8.0313 (2), 9.7460 (2), 24.2623 (7)
β (°) 94.0767 (12)
V3)1894.28 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.33 × 0.30 × 0.29
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.82, 0.85
No. of measured, independent and
observed [I > 2σ(I)] reflections
12888, 3288, 2778
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.121, 1.05
No. of reflections3288
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.38

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12.
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.323.218 (3)164
C11—H11···Cl2ii0.932.833.708 (3)157
C19—H19a···Cg1iii0.962.953.676 (3)133
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

We thank the Brazilian agencies: FAPESP, CNPq (fellowships to JZ-S and PRO) and CAPES (808/2009 to JZ-S) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHashmat, A. M. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271–6273.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOlivato, P. R., Domingues, N. L. C., Mondino, M. G., Tormena, C. F., Rittner, R. & Dal Colle, M. (2009). J. Mol. Struct. 920, 393–400.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVinhato, E. (2007). PhD Thesis, University of São Paulo, Brazil.  Google Scholar
First citationZoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587–3589.  CrossRef CAS Web of Science Google Scholar
First citationZukerman-Schpector, J., Maganhi, S., Olivato, P. R., Vinhato, E. & Cerqueira, C. R. (2006). Z. Kristallogr. New Cryst. Struct. 221, 165–166.  CAS Google Scholar
First citationZukerman-Schpector, J., Olivato, P. R., Cerqueira, C. R. Jr, Vinhato, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o835–o836.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds