organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

N′-[(E)-(1-Methyl-1H-pyrrol-2-yl)methyl­­idene]pyridine-4-carbohydrazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cBahauddin Zakariya University, Department of Chemistry, Multan 60800, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 27 June 2010; accepted 28 June 2010; online 30 June 2010)

In the title compound, C12H12N4O, the pyridine and pyrrole rings are inclined at an angle of 29.22 (8)° and an intra­molecular C—H⋯N inter­action geneates an S(6) ring. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, forming (010) C(7) chains. The chains are cross-linked by weak C—H⋯O inter­actions, which generate R22(18) ring motifs within an infinite sheet. Finally, two C—H⋯π inter­actions are present, where the C—H groups are from the pyridine ring and π is the pyrrole ring.

Related literature

For background information on Schiff bases containing heterocyclic rings and for related structures, see: Shafiq et al.,(2009a[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009a). Acta Cryst. E65, o2496.],b[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009b). Acta Cryst. E65, o2899.]); Hussain et al. (2010[Hussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010). Acta. Cryst. E66, o1880.]) For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N4O

  • Mr = 228.26

  • Monoclinic, P 21 /n

  • a = 8.2134 (3) Å

  • b = 10.6740 (4) Å

  • c = 13.1332 (4) Å

  • β = 96.938 (2)°

  • V = 1142.95 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.24 × 0.18 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.985

  • 12030 measured reflections

  • 2803 independent reflections

  • 2023 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.04

  • 2803 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8—C11/N4 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.86 2.19 3.0205 (18) 163
C4—H4⋯O1ii 0.93 2.54 3.3821 (19) 150
C12—H12B⋯O1iii 0.96 2.55 3.450 (2) 156
C12—H12C⋯N3 0.96 2.36 3.025 (2) 126
C2—H2ACg1iv 0.93 2.83 3.3258 (16) 114
C5—H5⋯Cg1v 0.93 2.71 3.4669 (17) 139
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported crystal structures of Schiff bases with N-containing aromatic ring (Shafiq et al., 2009a, 2009b), (Hussain et al., 2010) and as a part of this project, we report herein the structure and synthesis of the title compound (I, Fig. 1).

In (I) the pyridine ring A (C1–C5/N1), the central moiety B (O1/C6/N2/N3/C7) and the pyrrol moiety C (C8—C11/N4/C12) are planar with r. m. s. deviations of 0.0345, 0.0285 and 0.0276 Å, respectively. The dihedral angle between A/B, A/C and B/C is 38.32 (8)°, 29.22 (8)° and 9.44 (13)°, respectively. In title molecule, there exist intra as well inter-molecular H-bondings (Table 1). The molecules form infinite one dimensional polymeric chains extending along the b axis (Fig. 2), if only strong H-bondings are considered. If the strong as well as weak H-bondings are considered then the molecules form two-dimensional polymeric chains with R22(18) (Bernstein et al., 1995) ring motifs (Fig. 3). The C—H···π interactions (Table 1) also play important role in stabilizing the molecules.

Related literature top

For background information on Schiff bases containing heterocyclic rings and for related structures, see: Shafiq et al.,(2009a,b); Hussain et al. (2010) For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a hot stirred solution of isoniazid (1.37 g, 0.01 mole) in ethanol 15 ml was added N-methylpyrrol-2-carboxaldehyde (1.1 ml, 0.01 mol). The resultant mixture was then heated under reflux. The reaction was monitored through TLC. After an hour, the precipitate were formed. The reaction mixture was further heated for 30 min. The resultant crude material was recrystalized in 1,4-dioxane:ethanol (1:4) to affoard red prisms of (I).

Refinement top

The H-atoms were positioned geometrically (N–H = 0.86 Å, `C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form infinite one dimensional polymeric chains extending along b axis.
[Figure 3] Fig. 3. The partial packing (PLATON; Spek, 2009) which shows that molecules form R22(18) ring motifs in the infinite polymeric chains.
N'-[(E)-(1-Methyl-1H-pyrrol-2-yl)methylidene]pyridine- 4-carbohydrazide top
Crystal data top
C12H12N4OF(000) = 480
Mr = 228.26Dx = 1.326 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1770 reflections
a = 8.2134 (3) Åθ = 2.6–28.4°
b = 10.6740 (4) ŵ = 0.09 mm1
c = 13.1332 (4) ÅT = 296 K
β = 96.938 (2)°Prism, red
V = 1142.95 (7) Å30.24 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2803 independent reflections
Radiation source: fine-focus sealed tube2023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 7.50 pixels mm-1θmax = 28.3°, θmin = 2.5°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1414
Tmin = 0.980, Tmax = 0.985l = 1717
12030 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.235P]
where P = (Fo2 + 2Fc2)/3
2803 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H12N4OV = 1142.95 (7) Å3
Mr = 228.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2134 (3) ŵ = 0.09 mm1
b = 10.6740 (4) ÅT = 296 K
c = 13.1332 (4) Å0.24 × 0.18 × 0.15 mm
β = 96.938 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2803 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2023 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.985Rint = 0.029
12030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
2803 reflectionsΔρmin = 0.21 e Å3
155 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68517 (16)0.25900 (11)0.46989 (10)0.0596 (4)
N10.25031 (16)0.01556 (12)0.25463 (10)0.0424 (4)
N20.55170 (15)0.41010 (11)0.37015 (10)0.0388 (4)
N30.65784 (16)0.50489 (12)0.40795 (10)0.0417 (4)
N40.85194 (16)0.74061 (12)0.46127 (10)0.0411 (4)
C10.46019 (16)0.19827 (12)0.34909 (10)0.0315 (4)
C20.40449 (19)0.10059 (13)0.40461 (11)0.0374 (4)
C30.30152 (19)0.01259 (14)0.35500 (12)0.0414 (5)
C40.3056 (2)0.11012 (14)0.20128 (11)0.0421 (5)
C50.40918 (19)0.20229 (14)0.24441 (11)0.0378 (4)
C60.57736 (18)0.29160 (14)0.40312 (11)0.0371 (4)
C70.62947 (19)0.61063 (14)0.36395 (12)0.0416 (5)
C80.72195 (19)0.72388 (14)0.38651 (12)0.0404 (5)
C90.6991 (2)0.83500 (15)0.33312 (13)0.0497 (5)
C100.8163 (2)0.92006 (16)0.37628 (13)0.0539 (6)
C110.9081 (2)0.85957 (15)0.45424 (13)0.0496 (6)
C120.9127 (2)0.65484 (17)0.54194 (14)0.0574 (6)
H20.469240.427170.325510.0466*
H2A0.436350.094450.474820.0449*
H30.265510.052680.393520.0497*
H40.272130.113750.131120.0505*
H50.444380.266140.204120.0454*
H70.541040.614880.312680.0500*
H90.619370.850440.278010.0597*
H100.829241.002460.355690.0646*
H110.995750.894290.496280.0595*
H12A0.861080.672340.602170.0860*
H12B1.029280.664690.557370.0860*
H12C0.888280.570430.519950.0860*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0566 (8)0.0471 (7)0.0666 (8)0.0071 (6)0.0275 (6)0.0054 (6)
N10.0438 (8)0.0334 (7)0.0475 (7)0.0070 (6)0.0048 (5)0.0019 (5)
N20.0359 (7)0.0296 (6)0.0480 (7)0.0057 (5)0.0070 (5)0.0040 (5)
N30.0389 (7)0.0336 (7)0.0511 (7)0.0081 (5)0.0010 (5)0.0087 (5)
N40.0427 (7)0.0335 (7)0.0474 (7)0.0083 (5)0.0062 (6)0.0074 (5)
C10.0297 (7)0.0266 (7)0.0374 (7)0.0006 (5)0.0003 (5)0.0018 (5)
C20.0437 (8)0.0331 (8)0.0340 (7)0.0001 (6)0.0012 (6)0.0025 (6)
C30.0458 (9)0.0331 (8)0.0449 (8)0.0071 (7)0.0035 (6)0.0052 (6)
C40.0509 (9)0.0385 (8)0.0341 (7)0.0045 (7)0.0061 (6)0.0011 (6)
C50.0453 (9)0.0318 (7)0.0359 (7)0.0047 (6)0.0030 (6)0.0032 (6)
C60.0348 (8)0.0343 (8)0.0406 (7)0.0037 (6)0.0022 (6)0.0022 (6)
C70.0380 (8)0.0344 (8)0.0509 (9)0.0047 (7)0.0012 (7)0.0074 (7)
C80.0396 (8)0.0351 (8)0.0470 (8)0.0051 (6)0.0069 (7)0.0087 (6)
C90.0580 (10)0.0381 (9)0.0529 (9)0.0047 (8)0.0064 (8)0.0029 (7)
C100.0729 (12)0.0331 (8)0.0580 (10)0.0118 (8)0.0178 (9)0.0040 (7)
C110.0560 (10)0.0380 (9)0.0570 (10)0.0198 (8)0.0162 (8)0.0155 (8)
C120.0538 (11)0.0461 (10)0.0680 (11)0.0058 (8)0.0098 (8)0.0025 (9)
Geometric parameters (Å, º) top
O1—C61.219 (2)C7—C81.439 (2)
N1—C31.335 (2)C8—C91.379 (2)
N1—C41.339 (2)C9—C101.393 (2)
N2—N31.3877 (18)C10—C111.359 (2)
N2—C61.3453 (19)C2—H2A0.9300
N3—C71.277 (2)C3—H30.9300
N4—C81.372 (2)C4—H40.9300
N4—C111.358 (2)C5—H50.9300
N4—C121.443 (2)C7—H70.9300
N2—H20.8600C9—H90.9300
C1—C21.3815 (19)C10—H100.9300
C1—C51.3886 (19)C11—H110.9300
C1—C61.502 (2)C12—H12A0.9600
C2—C31.374 (2)C12—H12B0.9600
C4—C51.377 (2)C12—H12C0.9600
C3—N1—C4116.64 (13)N4—C11—C10109.47 (15)
N3—N2—C6120.21 (12)C1—C2—H2A120.00
N2—N3—C7114.22 (13)C3—C2—H2A120.00
C8—N4—C11108.33 (13)N1—C3—H3118.00
C8—N4—C12127.81 (13)C2—C3—H3118.00
C11—N4—C12123.58 (14)N1—C4—H4118.00
C6—N2—H2120.00C5—C4—H4118.00
N3—N2—H2120.00C1—C5—H5121.00
C2—C1—C6119.03 (12)C4—C5—H5121.00
C2—C1—C5117.80 (13)N3—C7—H7117.00
C5—C1—C6123.13 (12)C8—C7—H7117.00
C1—C2—C3119.32 (13)C8—C9—H9126.00
N1—C3—C2123.67 (14)C10—C9—H9126.00
N1—C4—C5123.72 (14)C9—C10—H10127.00
C1—C5—C4118.86 (13)C11—C10—H10127.00
N2—C6—C1113.89 (12)N4—C11—H11125.00
O1—C6—N2124.87 (14)C10—C11—H11125.00
O1—C6—C1121.24 (13)N4—C12—H12A109.00
N3—C7—C8125.91 (15)N4—C12—H12B109.00
N4—C8—C9107.35 (13)N4—C12—H12C109.00
C7—C8—C9125.57 (15)H12A—C12—H12B109.00
N4—C8—C7127.04 (14)H12A—C12—H12C109.00
C8—C9—C10107.99 (15)H12B—C12—H12C109.00
C9—C10—C11106.87 (15)
C4—N1—C3—C20.6 (2)C2—C1—C5—C40.4 (2)
C3—N1—C4—C50.5 (2)C6—C1—C5—C4177.90 (14)
C6—N2—N3—C7173.81 (14)C2—C1—C6—O138.1 (2)
N3—N2—C6—O14.1 (2)C2—C1—C6—N2142.47 (14)
N3—N2—C6—C1175.38 (12)C5—C1—C6—O1139.38 (16)
N2—N3—C7—C8178.82 (14)C5—C1—C6—N240.08 (19)
C11—N4—C8—C7177.64 (15)C1—C2—C3—N10.2 (2)
C11—N4—C8—C90.04 (17)N1—C4—C5—C10.0 (2)
C12—N4—C8—C78.4 (3)N3—C7—C8—N42.9 (3)
C12—N4—C8—C9174.00 (15)N3—C7—C8—C9174.33 (16)
C8—N4—C11—C100.12 (19)N4—C8—C9—C100.18 (18)
C12—N4—C11—C10174.15 (15)C7—C8—C9—C10177.82 (15)
C5—C1—C2—C30.3 (2)C8—C9—C10—C110.25 (19)
C6—C1—C2—C3177.89 (14)C9—C10—C11—N40.23 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8—C11/N4 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.193.0205 (18)163
C4—H4···O1ii0.932.543.3821 (19)150
C12—H12B···O1iii0.962.553.450 (2)156
C12—H12C···N30.962.363.025 (2)126
C2—H2A···Cg1iv0.932.833.3258 (16)114
C5—H5···Cg1v0.932.713.4669 (17)139
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1; (v) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H12N4O
Mr228.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.2134 (3), 10.6740 (4), 13.1332 (4)
β (°) 96.938 (2)
V3)1142.95 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.18 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.980, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
12030, 2803, 2023
Rint0.029
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.04
No. of reflections2803
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8—C11/N4 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.193.0205 (18)163
C4—H4···O1ii0.932.543.3821 (19)150
C12—H12B···O1iii0.962.553.450 (2)156
C12—H12C···N30.962.363.025 (2)126
C2—H2A···Cg1iv0.932.833.3258 (16)114
C5—H5···Cg1v0.932.713.4669 (17)139
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1; (v) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010). Acta. Cryst. E66, o1880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009a). Acta Cryst. E65, o2496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009b). Acta Cryst. E65, o2899.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds