organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­benzyl­­idene)-N-(4-meth­­oxy­benzyl­idene)-1,3,4-thia­diazol-2-amine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 22 May 2010; accepted 10 June 2010; online 18 June 2010)

The title compound, C16H12FN3OS, was synthesized by the reaction of 5-(4-meth­oxy­phen­yl)-1,3,4-thia­diazol-2-amine and 4-fluoro­benzaldehyde. An intra­molecular C—H⋯S hydrogen bond results in the formation of two five-membered rings. In the crystal structure, inter­molecular C—H⋯N hydrogen bonding links the mol­ecules, forming a two-dimensional network.

Related literature

For the biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12FN3OS

  • Mr = 313.35

  • Orthorhombic, P c a 21

  • a = 7.4580 (15) Å

  • b = 17.821 (4) Å

  • c = 10.891 (2) Å

  • V = 1447.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.932, Tmax = 0.977

  • 2617 measured reflections

  • 2617 independent reflections

  • 1965 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 1.01

  • 2617 reflections

  • 199 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1062 Friedel pairs

  • Flack parameter: −0.11 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯S 0.93 2.59 3.043 (5) 110
C12—H12A⋯S 0.93 2.75 3.138 (4) 106
C12—H12A⋯N3i 0.93 2.62 3.451 (6) 148
Symmetry code: (i) [-x+2, -y+1, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996; Wang et al., 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang et al., 1999).

We report herein the crystal structure of the title compound,(I). In the molecule of the title compound (Fig. 1), bond lengths are within normal ranges. Rings A(C2—C7), B(S/C9/N2/N3/C10) and C(C11—C16) are planar. The dihedral angle between them is A/B = 21.4 (1) Å, A/C=29.6 (3)Å and B/C= 10.7 (4) Å. The intramolecular C—H···S hydrogen bonds (Table 1) result in the formation of two planar five-membered rings D(H8A/C8/N1/C9/S) and E(S/H12A/C12/C11/C10). They are oriented with respect to the adjacent rings at dihedral angles of A/D= 11.6 (4) Å, B/D= 14.1 (4) Å, C/D= 24.5 (1) Å, A/E= 27.4 (1) Å, B/E= 6.1 (1) Å, C/E= 8.2 (1)Å and D/E= 19.5 (1) Å. In the crystal structure, intermolecular C—H···S hydrogen bond (Table 1) links the molecules to form a two-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Nakagawa et al. (1996); Wang et al. (1999).

Experimental top

5-(4-methoxyphenyl)-1,3,4-thiadiazol-2-amine(5 mmol) and 4-fluorobenzaldehyde(5 mmol) were added in toluene (50 ml). The water was removed by distillation for 5 h. The reaction mixture was left to cool to room temperature, filtered, and the filter cake was crystallized from acetone to give pure compound (I) (m.p. 412–414 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2eq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of(I). Hydrogen bonds are shown as dashed lines.
2-(4-Fluorobenzylidene)-N-(4-methoxybenzylidene)-1,3,4-thiadiazol-2-amine top
Crystal data top
C16H12FN3OSDx = 1.438 Mg m3
Mr = 313.35Melting point = 412–414 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac -2acCell parameters from 25 reflections
a = 7.4580 (15) Åθ = 9–13°
b = 17.821 (4) ŵ = 0.24 mm1
c = 10.891 (2) ÅT = 293 K
V = 1447.5 (5) Å3Block, colourless
Z = 40.30 × 0.30 × 0.10 mm
F(000) = 648
Data collection top
Enraf–Nonius CAD-4
diffractometer
1965 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.3°, θmin = 1.1°
ω/2θ scansh = 80
Absorption correction: ψ scan
(North et al., 1968)
k = 021
Tmin = 0.932, Tmax = 0.977l = 1313
2617 measured reflections3 standard reflections every 200 reflections
2617 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.078P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2617 reflectionsΔρmax = 0.33 e Å3
199 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 1062 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (13)
Crystal data top
C16H12FN3OSV = 1447.5 (5) Å3
Mr = 313.35Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 7.4580 (15) ŵ = 0.24 mm1
b = 17.821 (4) ÅT = 293 K
c = 10.891 (2) Å0.30 × 0.30 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1965 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.045
Tmin = 0.932, Tmax = 0.9773 standard reflections every 200 reflections
2617 measured reflections intensity decay: 1%
2617 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.132Δρmax = 0.33 e Å3
S = 1.01Δρmin = 0.17 e Å3
2617 reflectionsAbsolute structure: Flack (1983), 1062 Friedel pairs
199 parametersAbsolute structure parameter: 0.11 (13)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.92308 (13)0.41730 (5)0.79211 (10)0.0604 (3)
O0.9032 (5)0.04222 (18)0.5620 (3)0.0858 (10)
F0.8635 (5)0.78682 (14)0.8637 (3)0.0990 (9)
N10.8911 (5)0.2684 (2)0.8632 (3)0.0645 (10)
N20.8471 (5)0.3651 (2)1.0054 (3)0.0687 (9)
N30.8461 (5)0.4421 (2)1.0171 (3)0.0654 (9)
C10.9071 (7)0.1065 (3)0.6422 (6)0.0918 (16)
H1B0.90740.15160.59400.138*
H1C0.80310.10600.69420.138*
H1D1.01320.10480.69200.138*
C20.9047 (6)0.0268 (3)0.6164 (4)0.0678 (12)
C30.8810 (6)0.0860 (2)0.5372 (4)0.0739 (12)
H3B0.86840.07700.45350.089*
C40.8755 (6)0.1585 (3)0.5806 (4)0.0687 (11)
H4A0.85790.19810.52620.082*
C50.8963 (5)0.1733 (2)0.7064 (4)0.0603 (10)
C60.9228 (5)0.1129 (2)0.7838 (5)0.0657 (10)
H6A0.93880.12170.86730.079*
C70.9261 (6)0.0401 (3)0.7411 (4)0.0715 (13)
H7A0.94250.00030.79520.086*
C80.8852 (6)0.2493 (3)0.7494 (4)0.0643 (11)
H8A0.87300.28710.69120.077*
C90.8836 (5)0.3439 (2)0.8931 (4)0.0574 (10)
C100.8857 (5)0.4763 (2)0.9128 (3)0.0542 (9)
C110.8879 (5)0.5579 (2)0.9023 (3)0.0512 (9)
C120.9457 (5)0.5931 (2)0.7942 (5)0.0611 (9)
H12A0.98930.56400.72980.073*
C130.9392 (5)0.6695 (2)0.7818 (5)0.0661 (10)
H13A0.97870.69240.70990.079*
C140.8735 (6)0.7118 (2)0.8768 (4)0.0673 (11)
C150.8172 (6)0.6802 (3)0.9853 (4)0.0709 (12)
H15A0.77580.71011.04920.085*
C160.8234 (5)0.6033 (2)0.9975 (3)0.0606 (10)
H16A0.78410.58131.07010.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0706 (6)0.0737 (6)0.0370 (4)0.0041 (5)0.0021 (5)0.0022 (6)
O0.120 (3)0.064 (2)0.073 (2)0.0014 (18)0.0043 (19)0.0027 (16)
F0.140 (2)0.0664 (16)0.091 (2)0.0069 (16)0.0093 (18)0.0074 (14)
N10.064 (2)0.077 (3)0.052 (2)0.0011 (18)0.0054 (17)0.0085 (18)
N20.082 (2)0.084 (2)0.0407 (18)0.0013 (19)0.0027 (17)0.0109 (16)
N30.086 (2)0.076 (2)0.0349 (17)0.0007 (19)0.0027 (16)0.0037 (15)
C10.106 (4)0.065 (3)0.104 (4)0.001 (3)0.014 (3)0.013 (3)
C20.071 (3)0.074 (3)0.059 (3)0.002 (2)0.002 (2)0.004 (2)
C30.094 (3)0.079 (3)0.049 (2)0.005 (2)0.002 (2)0.005 (2)
C40.085 (3)0.070 (3)0.051 (2)0.002 (2)0.000 (2)0.0147 (19)
C50.061 (2)0.070 (3)0.050 (2)0.003 (2)0.0007 (18)0.0064 (19)
C60.075 (2)0.074 (2)0.048 (2)0.0045 (19)0.003 (2)0.009 (3)
C70.080 (3)0.071 (3)0.063 (3)0.012 (2)0.000 (2)0.014 (2)
C80.067 (2)0.077 (3)0.050 (2)0.000 (2)0.0010 (18)0.0091 (19)
C90.057 (2)0.073 (3)0.0419 (19)0.0012 (19)0.0034 (16)0.0054 (18)
C100.0435 (18)0.085 (3)0.0337 (18)0.0011 (18)0.0032 (14)0.0043 (17)
C110.0456 (19)0.075 (3)0.0328 (17)0.0029 (17)0.0051 (13)0.0045 (18)
C120.059 (2)0.086 (3)0.0384 (16)0.0027 (18)0.003 (2)0.003 (3)
C130.065 (2)0.085 (3)0.049 (2)0.010 (2)0.0044 (19)0.006 (2)
C140.075 (3)0.070 (3)0.057 (3)0.004 (2)0.009 (2)0.007 (2)
C150.081 (3)0.082 (3)0.049 (2)0.005 (2)0.003 (2)0.007 (2)
C160.060 (2)0.083 (3)0.0388 (18)0.001 (2)0.0008 (18)0.0020 (18)
Geometric parameters (Å, º) top
S—C101.706 (4)C4—H4A0.9300
S—C91.734 (4)C5—C61.381 (5)
O—C21.365 (6)C5—C81.436 (6)
O—C11.441 (6)C6—C71.379 (6)
F—C141.347 (5)C6—H6A0.9300
N1—C81.287 (6)C7—H7A0.9300
N1—C91.385 (5)C8—H8A0.9300
N2—C91.309 (5)C10—C111.459 (6)
N2—N31.379 (5)C11—C161.401 (5)
N3—C101.323 (5)C11—C121.402 (7)
C1—H1B0.9600C12—C131.370 (5)
C1—H1C0.9600C12—H12A0.9300
C1—H1D0.9600C13—C141.370 (7)
C2—C31.374 (6)C13—H13A0.9300
C2—C71.388 (6)C14—C151.375 (6)
C3—C41.377 (6)C15—C161.376 (6)
C3—H3B0.9300C15—H15A0.9300
C4—C51.403 (6)C16—H16A0.9300
C10—S—C987.1 (2)C2—C7—H7A120.4
C2—O—C1117.0 (4)N1—C8—C5124.2 (4)
C8—N1—C9118.8 (4)N1—C8—H8A117.9
C9—N2—N3112.0 (3)C5—C8—H8A117.9
C10—N3—N2112.2 (3)N2—C9—N1120.5 (4)
O—C1—H1B109.5N2—C9—S114.3 (3)
O—C1—H1C109.5N1—C9—S125.2 (3)
H1B—C1—H1C109.5N3—C10—C11122.0 (4)
O—C1—H1D109.5N3—C10—S114.4 (3)
H1B—C1—H1D109.5C11—C10—S123.5 (3)
H1C—C1—H1D109.5C16—C11—C12118.0 (4)
O—C2—C3114.8 (4)C16—C11—C10121.0 (3)
O—C2—C7125.4 (4)C12—C11—C10121.0 (4)
C3—C2—C7119.9 (4)C13—C12—C11121.1 (5)
C2—C3—C4120.6 (4)C13—C12—H12A119.5
C2—C3—H3B119.7C11—C12—H12A119.5
C4—C3—H3B119.7C14—C13—C12119.0 (5)
C3—C4—C5120.5 (4)C14—C13—H13A120.5
C3—C4—H4A119.7C12—C13—H13A120.5
C5—C4—H4A119.7F—C14—C13119.0 (4)
C6—C5—C4117.8 (4)F—C14—C15118.8 (4)
C6—C5—C8123.0 (4)C13—C14—C15122.2 (4)
C4—C5—C8119.2 (4)C14—C15—C16118.7 (4)
C7—C6—C5122.0 (4)C14—C15—H15A120.6
C7—C6—H6A119.0C16—C15—H15A120.6
C5—C6—H6A119.0C15—C16—C11121.0 (4)
C6—C7—C2119.3 (4)C15—C16—H16A119.5
C6—C7—H7A120.4C11—C16—H16A119.5
C9—N2—N3—C101.3 (5)C10—S—C9—N20.2 (3)
C1—O—C2—C3173.1 (4)C10—S—C9—N1179.1 (4)
C1—O—C2—C76.2 (7)N2—N3—C10—C11178.3 (3)
O—C2—C3—C4178.5 (4)N2—N3—C10—S1.1 (4)
C7—C2—C3—C40.9 (7)C9—S—C10—N30.5 (3)
C2—C3—C4—C50.8 (7)C9—S—C10—C11177.7 (3)
C3—C4—C5—C60.2 (6)N3—C10—C11—C169.2 (6)
C3—C4—C5—C8178.3 (4)S—C10—C11—C16167.7 (3)
C4—C5—C6—C71.1 (6)N3—C10—C11—C12174.2 (4)
C8—C5—C6—C7177.5 (4)S—C10—C11—C128.8 (5)
C5—C6—C7—C20.9 (7)C16—C11—C12—C130.1 (6)
O—C2—C7—C6179.2 (4)C10—C11—C12—C13176.6 (3)
C3—C2—C7—C60.1 (7)C11—C12—C13—C140.5 (6)
C9—N1—C8—C5178.4 (3)C12—C13—C14—F178.6 (3)
C6—C5—C8—N13.1 (7)C12—C13—C14—C151.4 (7)
C4—C5—C8—N1175.4 (4)F—C14—C15—C16178.5 (4)
N3—N2—C9—N1179.8 (3)C13—C14—C15—C161.5 (7)
N3—N2—C9—S0.9 (5)C14—C15—C16—C110.9 (6)
C8—N1—C9—N2164.0 (4)C12—C11—C16—C150.1 (6)
C8—N1—C9—S17.2 (6)C10—C11—C16—C15176.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···S0.932.593.043 (5)110
C12—H12A···S0.932.753.138 (4)106
C12—H12A···N3i0.932.623.451 (6)148
Symmetry code: (i) x+2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC16H12FN3OS
Mr313.35
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)7.4580 (15), 17.821 (4), 10.891 (2)
V3)1447.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.932, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
2617, 2617, 1965
Rint0.045
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.132, 1.01
No. of reflections2617
No. of parameters199
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.17
Absolute structureFlack (1983), 1062 Friedel pairs
Absolute structure parameter0.11 (13)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···S0.93002.59003.043 (5)110.00
C12—H12A···S0.93002.75003.138 (4)106.00
C12—H12A···N3i0.93002.62003.451 (6)148.00
Symmetry code: (i) x+2, y+1, z1/2.
 

Acknowledgements

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

References

First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds