organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-4-Phenyl-2-[(S)-1,2,3,4-tetra­hydro­isoquinolin-3-yl]-4,5-di­hydro-1,3-oxazole

aSchool of Chemistry, University of KwaZulu-Natal, Durban, South Africa, and bSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 27 May 2010; accepted 9 June 2010; online 26 June 2010)

The asymmetric unit cell of the title compound, C18H18N2O, contains four molecules. In the crystal structure, an inter­molecular N—H⋯N hydrogen bond helps to establish the packing.

Related literature

For the assymetric synthetic applications of oxazoline, see: Hargaden et al. (2009[Hargaden, G. C. & Guiry, P. J. (2009). Chem. Rev. 109, 2505-2550.]). For tetra­isoquinolines and their biological significance, see: Scott et al. (2002[Scott, J. D. & Williams, R. M. (2002). Chem. Rev. 102, 1669-1730.]). For ligand catalysis activity, see: Chakka et al. (2010[Chakka, S. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). Eur. J. Org. Chem. pp. 972-980.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2O

  • Mr = 278.34

  • Orthorhombic, P 21 21 21

  • a = 5.4023 (3) Å

  • b = 10.0999 (6) Å

  • c = 26.2205 (17) Å

  • V = 1430.66 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 173 K

  • 0.22 × 0.21 × 0.10 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.682, Tmax = 0.753

  • 6634 measured reflections

  • 1552 independent reflections

  • 1479 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.05

  • 1552 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2i 0.96 (1) 2.20 (1) 3.139 (2) 165 (2)
Symmetry code: (i) x+1, y, z.

Data collection: SAINT (Bruker, 2006[Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Heterocyclic rings play roles in a number of key areas of organic and inorganic chemistry. As part of an ongoing study into the asymmetric hydrogen transfer reactions we made a series of ligands (Chakka et al., 2010). The title compound (I) is one such molecule (Fig 1). It combines for the first time two important heterocyclic rings into a single structure, namely oxazoline (Hargaden et al., 2009) and tetraisoquinoline (TIQ), (Scott et al., 2002). The asymmetric unit cell contains four molecules. There are inter-molecular N(1)—H···N(1) bond interactions (2.212 Å) that hold the structure in two dimensional planes. The intermolecular distance value between ring centroids in the b axis direction (5.402 Å), suggests that there is no π-stacking interaction between parallel molecules (Fig 2).

Related literature top

For the assymetric synthetic applications of oxazoline, see: Hargaden et al. (2009). For tetraisoquinolines and their biological significance, see: Scott et al. (2002). For ligand catalysis activity, see: Chakka et al. (2010).

Experimental top

A solution of Cbz-protected TIQoxazoline (1.0 g, 2.89 mmol) in methanol (30 ml) was added to a suspension of 10 wt.% Pd/C (0.5 g) in methanol (10 ml). The reaction mixture was connected to an H2 source at atmospheric pressure and stirred at room temperature for 3 h. Completion of the reaction was monitored by TLC using hexane/ethyl acetate (7:3) with the Rf = 0.6. The Pd/C was filtered off over a celite pad and the filtrate was concentrated under reduced pressure to afford crude (I). The title compound was purified on a deactivated silica gel column packed with a suspension of silica gel in 20% Et3N/CH2Cl2. The silica was washed with 1% Et3N/CH2Cl2. The chromatography was then performed using 0–2% MeOH/1%Et3N/CH2Cl2 as the eluent to afford TIQ-oxazoline product. M.p: 304 – 306 K.

1H NMR (400 MHz, CDCl3): δ 7.37–7.23 (m, 3H), 7.23–7.10 (m, 5H), 7.05 (m, 1H), 5.23 (t, J = 18.21 Hz, 1H), 4.68 (q, J = 10.10, 8.26 Hz, 1H), 4.16 (m, 3H), 3.92 (m, 1H), 3.10–3.05 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 168.9, 142.0, 135.0, 133.3, 129.2, 128.7, 127.6, 126.5, 126.2, 126.1, 126.0, 69.4, 51.5, 47.6, 32.4.

IR (neat): 3225, 1663, 1493, 1108, 957, 907, 916, 740, 749, 697 cm-1.

HR ESI MS: 279.1492 [M + H]+ (calcd. for C18H19N2O 279.1512).

Refinement top

All hydrogen atoms, except H1N on N1, were positioned geometrically with C—H = 0.95 - 1.00 Å and refined as riding on their parent atoms with Uiso (H) = 1.2 - 1.5 Ueq (C). The hydrogen atoms H1N were located in the difference electron density maps and refined with simple bond length constraint.

Computing details top

Data collection: SAINT (Bruker, 2006); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing numbering scheme. All non-hydrogen atoms are shown as ellipsoids with probability level of 50%.
[Figure 2] Fig. 2. Projection viewed along [010]. All hydrogen atoms except the hydrogen H1N on N1 are omitted. The hydrogen bonds are shown as dotted lines.
(R)-4-Phenyl-2-[(S)-1,2,3,4-tetrahydroisoquinolin-3-yl]-4,5- dihydro-1,3-oxazole top
Crystal data top
C18H18N2OF(000) = 592
Mr = 278.34Dx = 1.292 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 6634 reflections
a = 5.4023 (3) Åθ = 4.7–69.2°
b = 10.0999 (6) ŵ = 0.64 mm1
c = 26.2205 (17) ÅT = 173 K
V = 1430.66 (15) Å3Needle, colourless
Z = 40.22 × 0.21 × 0.10 mm
Data collection top
Bruker Kappa DUO APEXII
diffractometer
1552 independent reflections
Radiation source: fine-focus sealed tube1479 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: n/a pixels mm-1θmax = 69.2°, θmin = 4.7°
0.5° ϕ scans and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
k = 1112
Tmin = 0.682, Tmax = 0.753l = 1530
6634 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.1838P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1552 reflectionsΔρmax = 0.14 e Å3
195 parametersΔρmin = 0.12 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (5)
Crystal data top
C18H18N2OV = 1430.66 (15) Å3
Mr = 278.34Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.4023 (3) ŵ = 0.64 mm1
b = 10.0999 (6) ÅT = 173 K
c = 26.2205 (17) Å0.22 × 0.21 × 0.10 mm
Data collection top
Bruker Kappa DUO APEXII
diffractometer
1552 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1479 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.753Rint = 0.036
6634 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.14 e Å3
1552 reflectionsΔρmin = 0.12 e Å3
195 parameters
Special details top

Experimental. Half sphere of data collected using SAINT strategy (Bruker, 2006). Crystal to detector distance = 50 mm; combination of ϕ and ω scans of 0.5°, 30 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4184 (2)0.79986 (13)0.19408 (5)0.0306 (3)
N10.5780 (3)1.06125 (15)0.15598 (6)0.0272 (3)
H1N0.702 (3)1.0028 (18)0.1694 (7)0.033 (6)*
N20.0533 (3)0.90911 (15)0.19216 (6)0.0285 (4)
C10.6813 (4)1.15005 (18)0.11756 (7)0.0324 (4)
H1A0.82141.19910.13290.039*
H1B0.55331.21570.10800.039*
C20.7714 (3)1.08180 (18)0.06969 (7)0.0269 (4)
C30.9535 (4)1.13952 (18)0.03901 (7)0.0322 (4)
H31.01841.22380.04800.039*
C41.0408 (4)1.0762 (2)0.00419 (7)0.0363 (5)
H41.16561.11620.02450.044*
C50.9444 (4)0.9538 (2)0.01748 (7)0.0382 (5)
H51.00250.90960.04710.046*
C60.7634 (4)0.89605 (19)0.01249 (7)0.0356 (5)
H60.69780.81230.00310.043*
C70.6755 (4)0.95876 (18)0.05633 (7)0.0285 (4)
C80.4854 (4)0.89025 (19)0.08944 (7)0.0350 (5)
H8A0.56060.80970.10430.042*
H8B0.34480.86210.06780.042*
C90.3869 (3)0.97793 (18)0.13282 (7)0.0272 (4)
H90.25671.03740.11830.033*
C100.2691 (3)0.89535 (18)0.17416 (7)0.0260 (4)
C110.2612 (3)0.72424 (17)0.22836 (7)0.0279 (4)
H11A0.34440.70890.26150.033*
H11B0.21590.63780.21320.033*
C120.0312 (3)0.81315 (17)0.23493 (7)0.0258 (4)
H120.12260.75920.23080.031*
C130.0251 (3)0.88531 (17)0.28547 (6)0.0247 (4)
C140.1619 (3)0.86228 (18)0.32043 (7)0.0288 (4)
H140.29020.80140.31240.035*
C150.1639 (4)0.92738 (19)0.36719 (7)0.0327 (4)
H150.29320.91060.39090.039*
C160.0209 (4)1.01606 (19)0.37932 (7)0.0329 (4)
H160.01881.06080.41120.040*
C170.2105 (4)1.03964 (19)0.34458 (7)0.0330 (4)
H170.33941.09990.35280.040*
C180.2114 (3)0.97527 (18)0.29802 (7)0.0290 (4)
H180.34030.99250.27430.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0268 (6)0.0313 (6)0.0336 (7)0.0056 (6)0.0025 (5)0.0064 (5)
N10.0279 (7)0.0272 (7)0.0267 (7)0.0012 (7)0.0002 (6)0.0021 (6)
N20.0249 (7)0.0349 (8)0.0257 (7)0.0035 (7)0.0025 (6)0.0027 (7)
C10.0363 (11)0.0260 (8)0.0349 (10)0.0015 (8)0.0026 (8)0.0034 (8)
C20.0281 (9)0.0266 (8)0.0260 (8)0.0031 (8)0.0035 (7)0.0029 (7)
C30.0335 (10)0.0292 (9)0.0338 (10)0.0020 (8)0.0014 (8)0.0045 (8)
C40.0385 (10)0.0396 (10)0.0309 (9)0.0013 (10)0.0044 (8)0.0087 (8)
C50.0493 (12)0.0387 (10)0.0267 (9)0.0046 (10)0.0070 (9)0.0009 (8)
C60.0488 (12)0.0302 (9)0.0279 (9)0.0025 (9)0.0006 (8)0.0024 (7)
C70.0326 (9)0.0291 (9)0.0237 (8)0.0016 (8)0.0018 (7)0.0029 (7)
C80.0437 (12)0.0335 (9)0.0277 (9)0.0099 (9)0.0030 (8)0.0035 (8)
C90.0253 (9)0.0310 (9)0.0252 (9)0.0017 (8)0.0027 (7)0.0016 (7)
C100.0260 (9)0.0272 (8)0.0247 (8)0.0024 (8)0.0050 (7)0.0001 (7)
C110.0297 (9)0.0262 (8)0.0278 (9)0.0022 (8)0.0005 (7)0.0006 (7)
C120.0227 (8)0.0284 (8)0.0262 (8)0.0007 (7)0.0006 (7)0.0002 (8)
C130.0232 (8)0.0245 (8)0.0264 (8)0.0045 (7)0.0024 (7)0.0029 (7)
C140.0254 (9)0.0281 (9)0.0329 (10)0.0005 (8)0.0017 (8)0.0027 (7)
C150.0311 (10)0.0358 (10)0.0313 (9)0.0013 (9)0.0059 (8)0.0021 (8)
C160.0360 (11)0.0361 (9)0.0267 (8)0.0044 (9)0.0025 (8)0.0049 (8)
C170.0320 (9)0.0301 (9)0.0368 (10)0.0044 (8)0.0050 (8)0.0035 (8)
C180.0244 (9)0.0310 (9)0.0316 (9)0.0010 (8)0.0011 (7)0.0030 (8)
Geometric parameters (Å, º) top
O1—C101.362 (2)C8—C91.537 (2)
O1—C111.454 (2)C8—H8A0.9900
N1—C11.460 (2)C8—H8B0.9900
N1—C91.464 (2)C9—C101.508 (2)
N1—H1N0.960 (10)C9—H91.0000
N2—C101.265 (2)C11—C121.542 (3)
N2—C121.487 (2)C11—H11A0.9900
C1—C21.513 (2)C11—H11B0.9900
C1—H1A0.9900C12—C131.513 (2)
C1—H1B0.9900C12—H121.0000
C2—C71.391 (3)C13—C141.384 (2)
C2—C31.398 (3)C13—C181.395 (3)
C3—C41.384 (3)C14—C151.391 (3)
C3—H30.9500C14—H140.9500
C4—C51.386 (3)C15—C161.378 (3)
C4—H40.9500C15—H150.9500
C5—C61.383 (3)C16—C171.391 (3)
C5—H50.9500C16—H160.9500
C6—C71.396 (3)C17—C181.383 (3)
C6—H60.9500C17—H170.9500
C7—C81.512 (3)C18—H180.9500
C10—O1—C11105.26 (13)C10—C9—C8111.06 (15)
C1—N1—C9109.66 (14)N1—C9—H9108.0
C1—N1—H1N111.3 (13)C10—C9—H9108.0
C9—N1—H1N106.9 (13)C8—C9—H9108.0
C10—N2—C12106.47 (15)N2—C10—O1118.72 (17)
N1—C1—C2114.56 (14)N2—C10—C9126.58 (17)
N1—C1—H1A108.6O1—C10—C9114.67 (15)
C2—C1—H1A108.6O1—C11—C12103.52 (14)
N1—C1—H1B108.6O1—C11—H11A111.1
C2—C1—H1B108.6C12—C11—H11A111.1
H1A—C1—H1B107.6O1—C11—H11B111.1
C7—C2—C3119.32 (17)C12—C11—H11B111.1
C7—C2—C1119.75 (16)H11A—C11—H11B109.0
C3—C2—C1120.92 (17)N2—C12—C13110.39 (13)
C4—C3—C2121.21 (18)N2—C12—C11103.33 (14)
C4—C3—H3119.4C13—C12—C11113.32 (14)
C2—C3—H3119.4N2—C12—H12109.9
C3—C4—C5119.33 (19)C13—C12—H12109.9
C3—C4—H4120.3C11—C12—H12109.9
C5—C4—H4120.3C14—C13—C18118.68 (17)
C6—C5—C4119.93 (19)C14—C13—C12121.02 (16)
C6—C5—H5120.0C18—C13—C12120.29 (15)
C4—C5—H5120.0C13—C14—C15120.66 (17)
C5—C6—C7121.13 (19)C13—C14—H14119.7
C5—C6—H6119.4C15—C14—H14119.7
C7—C6—H6119.4C16—C15—C14120.32 (18)
C2—C7—C6119.08 (18)C16—C15—H15119.8
C2—C7—C8121.13 (16)C14—C15—H15119.8
C6—C7—C8119.76 (17)C15—C16—C17119.57 (17)
C7—C8—C9113.36 (15)C15—C16—H16120.2
C7—C8—H8A108.9C17—C16—H16120.2
C9—C8—H8A108.9C18—C17—C16119.98 (18)
C7—C8—H8B108.9C18—C17—H17120.0
C9—C8—H8B108.9C16—C17—H17120.0
H8A—C8—H8B107.7C17—C18—C13120.78 (17)
N1—C9—C10108.50 (14)C17—C18—H18119.6
N1—C9—C8113.21 (15)C13—C18—H18119.6
C9—N1—C1—C252.7 (2)C11—O1—C10—C9173.78 (14)
N1—C1—C2—C723.6 (3)N1—C9—C10—N2108.6 (2)
N1—C1—C2—C3155.27 (17)C8—C9—C10—N2126.4 (2)
C7—C2—C3—C40.4 (3)N1—C9—C10—O169.47 (19)
C1—C2—C3—C4178.49 (18)C8—C9—C10—O155.6 (2)
C2—C3—C4—C50.5 (3)C10—O1—C11—C1214.48 (17)
C3—C4—C5—C60.3 (3)C10—N2—C12—C13109.57 (16)
C4—C5—C6—C70.2 (3)C10—N2—C12—C1111.91 (18)
C3—C2—C7—C60.1 (3)O1—C11—C12—N215.96 (17)
C1—C2—C7—C6178.97 (17)O1—C11—C12—C13103.52 (16)
C3—C2—C7—C8177.66 (17)N2—C12—C13—C14127.42 (17)
C1—C2—C7—C81.2 (3)C11—C12—C13—C14117.22 (18)
C5—C6—C7—C20.4 (3)N2—C12—C13—C1853.6 (2)
C5—C6—C7—C8177.41 (18)C11—C12—C13—C1861.8 (2)
C2—C7—C8—C98.5 (3)C18—C13—C14—C150.1 (3)
C6—C7—C8—C9173.72 (17)C12—C13—C14—C15178.90 (16)
C1—N1—C9—C10175.40 (15)C13—C14—C15—C160.1 (3)
C1—N1—C9—C860.83 (19)C14—C15—C16—C170.3 (3)
C7—C8—C9—N138.5 (2)C15—C16—C17—C180.7 (3)
C7—C8—C9—C10160.89 (15)C16—C17—C18—C130.7 (3)
C12—N2—C10—O13.0 (2)C14—C13—C18—C170.4 (3)
C12—N2—C10—C9174.98 (16)C12—C13—C18—C17178.58 (17)
C11—O1—C10—N28.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.96 (1)2.20 (1)3.139 (2)165 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H18N2O
Mr278.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)5.4023 (3), 10.0999 (6), 26.2205 (17)
V3)1430.66 (15)
Z4
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.22 × 0.21 × 0.10
Data collection
DiffractometerBruker Kappa DUO APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.682, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
6634, 1552, 1479
Rint0.036
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.05
No. of reflections1552
No. of parameters195
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.12

Computer programs: SAINT (Bruker, 2006), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.960 (10)2.203 (11)3.139 (2)164.8 (18)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors would like to thank Dr Hong Su (University of Cape Town) for the data collection and structure refinement.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakka, S. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). Eur. J. Org. Chem. pp. 972–980.  Web of Science CrossRef Google Scholar
First citationHargaden, G. C. & Guiry, P. J. (2009). Chem. Rev. 109, 2505–2550.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationScott, J. D. & Williams, R. M. (2002). Chem. Rev. 102, 1669–1730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds