metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m751-m752

Bis(μ-3,5-di­nitro-2-oxidobenzoato)-κ3O1,O2:O1;κ3O1:O1,O2-bis­[aqua­(2-phenyl-1,3,7,8-tetra­aza­cyclo­penta­[l]phenanthrene-κ2N7,N8)cobalt(II)]

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: yys@ujs.edu.cn

(Received 27 April 2010; accepted 13 May 2010; online 5 June 2010)

In the title compound, [Co2(C7H2N2O7)2(C19H12N4)2(H2O)2], the CoII atom is six-coordinated by two N atoms from a 2-phenyl-1H-1,3,7,8,-tetraaza­cyclo­penta­[l]phenanthrene (L) ligand, three O atoms from two 3,5-dinitro-2-oxidobenzoate (3,5-dinitro­salicylate or DNSA) ligands and one O atom from a water mol­ecule in a distorted octa­hedral geometry. The CoII atoms are bridged by two carboxyl­ate O atoms from two DNSA ligands, forming a centrosymmetric dinuclear structure. Neighbouring dinuclear units inter­act with each other through two types of ππ inter­actions between the L ligands [shortest centroid–centroid distance = 3.646 (3) Å] and between the L and DNSA ligands [shortest atom-to-centroid distance = 3.794 (3) Å]. N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds are observed, which lead to a three-dimensional structure.

Related literature

For general background to metal–organic coordination polymers, see: Che et al. (2008[Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184-191.]). For a related structure, see: Liu et al. (2009[Liu, D.-M., Li, X.-Y., Wang, X.-C., Li, C.-X. & Liu, C.-B. (2009). Acta Cryst. E65, o1308.]). For the ligand synthesis, see: Steck & Day (1943[Steck, E. A. & Day, A. R. (1943). J. Am. Chem. Soc. 65, 452-456.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C7H2N2O7)2(C19H12N4)2(H2O)2]

  • Mr = 1198.76

  • Triclinic, [P \overline 1]

  • a = 8.2943 (4) Å

  • b = 11.0232 (5) Å

  • c = 13.6139 (7) Å

  • α = 102.690 (4)°

  • β = 107.282 (4)°

  • γ = 90.459 (4)°

  • V = 1155.9 (1) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 292 K

  • 0.32 × 0.27 × 0.23 mm

Data collection
  • Oxford Diffraction Gemini R Ultra CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.771, Tmax = 0.829

  • 7153 measured reflections

  • 4041 independent reflections

  • 2933 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.111

  • S = 1.00

  • 4041 reflections

  • 378 parameters

  • 168 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.97 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Selected bond lengths (Å)

Co—N1 2.102 (3)
Co—N2 2.095 (3)
Co—O1 2.050 (2)
Co—O1i 2.216 (3)
Co—O3 1.991 (3)
Co—OW1 2.139 (3)
Symmetry code: (i) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O6ii 0.86 2.17 2.948 (5) 150
OW1—H1WA⋯N3iii 0.81 (6) 2.03 (6) 2.831 (5) 172 (5)
OW1—H1WB⋯O2iv 0.80 (5) 1.88 (5) 2.662 (4) 165 (5)
Symmetry codes: (ii) x-1, y, z-1; (iii) -x, -y+1, -z+1; (iv) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic coordination polymers have attracted increasing interest over the past decade because of their intriguing structures and tremendous potential applications in catalysis, molecular adsorption, nonlinear optics, magnetism, and so on (Che et al., 2008). 1,10-Phenanthroline (phen) has been widely used to build supramolecular architectures owing to its excellent coordinating ability and large conjugated system. However, building blocks derived from the appropriate modification of phen, such as 2-phenyl-1H-1,3,7,8-tetra-azacyclopenta[l]phenanthrene (L) have received considerably less attention (Liu et al., 2009). Hereby, we have prepared the title compound based on L and 3,5-dinitrosalicylic acid (H2DNSA) ligands.

In the title compound, the CoII atom is six-coordinated by two N atoms from one L ligand, four O atoms from two DNSA ligands and one water molecule (Fig. 1). The Co—O distances range from 1.991 (3) to 2.216 (3) Å and the Co—N lengths are 2.095 (3) and 2.102 (3) Å (Table 1). The N1, N2, O1, O3 atoms comprise the equatorial plane, while the O1i and OW1 atoms occupy the axial position [symmetry code: (i) -x, -y, 1-z]. A carboxylate O atom and the hydroxy O atom of the DNSA ligand coordinate to one Co atom, and this carboxylate O atom bridges the other Co atom, forming a dinuclear structure. The two nitro groups are uncoordinated.

It is noteworthy that various hydrogen bonds interactions are observed in the title compound. (a) An N—H···O hydrogen bond between the imidazole ring donor and the nitro group of the DNSA ligand (Table 2). (b) O—H···N or O—H···O hydrogen bonds involving the coordinated water molecule OW1 and the imidazole N3 and carboxylate O2 atoms (Table 2). In addition, two types of ππ stacking interactions further intensify the architectures. One is the offset face-to-face ππ interactions between the L ligands with the shortest centroid–centroid distance of 3.646 (3) Å, while the other exists between the L and DNSA ligands [shortest atom-to-centroid distance = 3.794 (3) Å] (Fig. 2), which lead to a three-dimensional supramolecular structure (Fig. 3).

Related literature top

For general background to metal–organic coordination polymers, see: Che et al. (2008). For a related structure, see: Liu et al. (2009). For the ligand synthesis, see: Steck & Day (1943).

Experimental top

The L ligand was synthesized according to the literature method (Steck & Day, 1943). The title compound was synthesized under hydrothermal conditions. A mixture of L (0.06 g, 0.2 mmol), H2DNSA (0.048 g, 0.2 mmol), Co(NO3)2 (0.036 g, 0.2 mmol) and water (10 ml) in a mole ratio 1:1:1:5000 was placed in a 25 ml Teflon-lined autoclave and heated for 3 d at 433 K under autogenous pressure. Upon cooling and opening the bomb, yellow block-shaped crystals were obtained, washed with H2O and dried in air (yield 45% based on Co).

Refinement top

H atoms on C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C,N). H atoms of water molecule were located from a difference Fourier map and their positions and Uiso values were refined freely.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (A) -x, -y, -z+1.]
[Figure 2] Fig. 2. View of the one-dimensional supramolecular chain generated by ππ interactions (dashed lines). H atoms except those of water molecules have been omitted for clarity.
[Figure 3] Fig. 3. View of a three-dimensional supramolecular structure with hydrogen bonds indicated by dotted lines. Most H atoms have been omitted.
Bis(µ-3,5-dinitro-2-oxidobenzoato)-κ3O1,O2:O1;κ3O1:O1,O2- bis[aqua(2-phenyl-1,3,7,8-tetraazacyclopenta[l]phenanthrene- κ2N7,N8)cobalt(II)] top
Crystal data top
[Co2(C7H2N2O7)2(C19H12N4)2(H2O)2]Z = 1
Mr = 1198.76F(000) = 610
Triclinic, P1Dx = 1.722 Mg m3
Dm = 1.722 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2943 (4) ÅCell parameters from 3653 reflections
b = 11.0232 (5) Åθ = 4.4–25°
c = 13.6139 (7) ŵ = 0.81 mm1
α = 102.690 (4)°T = 292 K
β = 107.282 (4)°Block, yellow
γ = 90.459 (4)°0.32 × 0.27 × 0.23 mm
V = 1155.9 (1) Å3
Data collection top
Oxford Diffraction Gemini R Ultra CCD
diffractometer
4041 independent reflections
Radiation source: fine-focus sealed tube2933 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 25.0°, θmin = 4.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 99
Tmin = 0.771, Tmax = 0.829k = 1311
7153 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0638P)2]
where P = (Fo2 + 2Fc2)/3
4041 reflections(Δ/σ)max = 0.002
378 parametersΔρmax = 0.97 e Å3
168 restraintsΔρmin = 1.00 e Å3
Crystal data top
[Co2(C7H2N2O7)2(C19H12N4)2(H2O)2]γ = 90.459 (4)°
Mr = 1198.76V = 1155.9 (1) Å3
Triclinic, P1Z = 1
a = 8.2943 (4) ÅMo Kα radiation
b = 11.0232 (5) ŵ = 0.81 mm1
c = 13.6139 (7) ÅT = 292 K
α = 102.690 (4)°0.32 × 0.27 × 0.23 mm
β = 107.282 (4)°
Data collection top
Oxford Diffraction Gemini R Ultra CCD
diffractometer
4041 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2933 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 0.829Rint = 0.028
7153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044168 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.97 e Å3
4041 reflectionsΔρmin = 1.00 e Å3
378 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0231 (5)0.3815 (4)0.6428 (3)0.0304 (9)
H10.04520.36350.70490.037*
C20.1233 (6)0.4828 (4)0.6499 (3)0.0346 (10)
H20.12140.53070.71570.041*
C30.2237 (5)0.5105 (4)0.5595 (3)0.0336 (9)
H30.29110.57740.56310.040*
C40.2245 (5)0.4375 (4)0.4614 (3)0.0286 (8)
C50.3250 (5)0.4543 (4)0.3592 (3)0.0299 (8)
C60.3182 (5)0.3757 (4)0.2679 (3)0.0311 (9)
C70.2138 (5)0.2745 (4)0.2631 (3)0.0277 (8)
C80.1991 (5)0.1923 (4)0.1726 (3)0.0344 (9)
H80.26000.20200.10580.041*
C90.0946 (6)0.0974 (4)0.1829 (3)0.0369 (10)
H90.08380.04220.12330.044*
C100.0049 (5)0.0841 (4)0.2834 (3)0.0325 (9)
H100.06500.01890.28950.039*
C110.1165 (5)0.2559 (4)0.3627 (3)0.0247 (8)
C120.1215 (5)0.3373 (3)0.4607 (3)0.0249 (8)
C130.4998 (5)0.5157 (4)0.2329 (3)0.0322 (9)
C140.6334 (5)0.5801 (4)0.1703 (3)0.0356 (9)
C150.6963 (6)0.6831 (4)0.2208 (4)0.0438 (11)
H150.65180.71370.29350.053*
C160.8264 (7)0.7403 (5)0.1618 (4)0.0546 (13)
H160.86960.80910.19570.066*
C170.8916 (7)0.6973 (5)0.0553 (4)0.0606 (14)
H170.97870.73650.01670.073*
C180.8286 (7)0.5960 (6)0.0052 (4)0.0619 (15)
H180.87230.56710.06770.074*
C190.7008 (7)0.5364 (5)0.0621 (4)0.0511 (13)
H190.65990.46680.02760.061*
C200.3815 (5)0.0284 (4)0.6442 (3)0.0269 (8)
C210.5087 (5)0.0973 (4)0.6896 (3)0.0328 (9)
H210.54190.16370.64660.039*
C220.5884 (5)0.0697 (4)0.7980 (3)0.0368 (9)
C230.5475 (5)0.0299 (4)0.8637 (3)0.0360 (9)
H230.60500.04990.93580.043*
C240.4202 (5)0.0997 (4)0.8213 (3)0.0323 (9)
C250.3257 (5)0.0739 (4)0.7106 (3)0.0265 (8)
C260.2996 (5)0.0712 (4)0.5268 (3)0.0271 (8)
N10.0218 (4)0.3109 (3)0.5517 (2)0.0254 (7)
N20.0149 (4)0.1606 (3)0.3706 (2)0.0250 (6)
N30.4378 (4)0.5429 (3)0.3369 (3)0.0324 (8)
N40.4312 (4)0.4167 (3)0.1875 (3)0.0321 (8)
H40.45380.38500.12090.039*
N50.7161 (5)0.1487 (4)0.8424 (3)0.0484 (9)
N60.3854 (5)0.2056 (4)0.8942 (3)0.0446 (9)
O10.1485 (3)0.0397 (2)0.4865 (2)0.0305 (5)
O20.3743 (4)0.1379 (3)0.4735 (2)0.0459 (8)
O30.2036 (4)0.1369 (3)0.6762 (2)0.0339 (5)
O40.7338 (5)0.2469 (4)0.7867 (3)0.0650 (9)
O50.8033 (5)0.1117 (4)0.9352 (3)0.0691 (10)
O60.4661 (6)0.2254 (4)0.9869 (3)0.0813 (11)
O70.2851 (6)0.2779 (4)0.8644 (3)0.0857 (10)
OW10.3241 (4)0.2215 (3)0.5222 (3)0.0345 (5)
Co0.09090 (7)0.14151 (5)0.52610 (4)0.0264 (2)
H1WA0.362 (7)0.285 (6)0.566 (5)0.064 (18)*
H1WB0.407 (7)0.184 (5)0.523 (4)0.058 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (2)0.031 (2)0.0251 (15)0.0072 (17)0.0071 (17)0.0072 (14)
C20.041 (3)0.031 (2)0.0312 (16)0.0091 (18)0.0129 (18)0.0042 (17)
C30.032 (2)0.031 (2)0.0381 (15)0.0114 (19)0.0118 (18)0.0079 (15)
C40.027 (2)0.0249 (19)0.0326 (12)0.0062 (16)0.0055 (16)0.0089 (14)
C50.026 (2)0.027 (2)0.0351 (13)0.0054 (16)0.0042 (16)0.0115 (14)
C60.027 (2)0.035 (2)0.0308 (14)0.0071 (17)0.0025 (16)0.0133 (14)
C70.024 (2)0.0286 (19)0.0279 (13)0.0026 (15)0.0021 (15)0.0094 (14)
C80.036 (3)0.040 (2)0.0254 (16)0.0039 (18)0.0045 (18)0.0088 (15)
C90.040 (3)0.041 (2)0.0267 (14)0.0078 (19)0.0101 (18)0.0022 (17)
C100.029 (2)0.037 (2)0.0295 (13)0.0080 (19)0.0082 (17)0.0038 (15)
C110.020 (2)0.0269 (19)0.0264 (12)0.0036 (15)0.0042 (15)0.0091 (13)
C120.021 (2)0.0230 (18)0.0279 (12)0.0032 (15)0.0026 (15)0.0069 (13)
C130.031 (2)0.030 (2)0.0349 (14)0.0058 (16)0.0057 (16)0.0121 (16)
C140.030 (2)0.036 (2)0.0398 (16)0.0072 (17)0.0048 (16)0.0158 (16)
C150.044 (3)0.036 (2)0.049 (2)0.011 (2)0.008 (2)0.0137 (18)
C160.048 (3)0.047 (3)0.072 (2)0.021 (2)0.014 (2)0.025 (2)
C170.046 (3)0.070 (3)0.069 (2)0.023 (3)0.005 (2)0.041 (2)
C180.058 (4)0.074 (4)0.045 (2)0.015 (3)0.005 (2)0.024 (2)
C190.050 (3)0.059 (3)0.0401 (16)0.018 (2)0.005 (2)0.0139 (19)
C200.019 (2)0.029 (2)0.0318 (13)0.0034 (15)0.0040 (13)0.0095 (14)
C210.025 (2)0.035 (2)0.0384 (15)0.0094 (17)0.0063 (16)0.0134 (16)
C220.024 (2)0.047 (2)0.0400 (16)0.0079 (18)0.0040 (16)0.0203 (16)
C230.027 (2)0.051 (2)0.0278 (19)0.0026 (18)0.0005 (17)0.0160 (16)
C240.025 (2)0.042 (2)0.0263 (13)0.0014 (17)0.0010 (14)0.0089 (14)
C250.022 (2)0.031 (2)0.0252 (13)0.0047 (15)0.0029 (14)0.0104 (13)
C260.0219 (17)0.0223 (19)0.0328 (14)0.0051 (15)0.0040 (12)0.0035 (14)
N10.0257 (17)0.0237 (14)0.0258 (11)0.0052 (13)0.0052 (13)0.0070 (11)
N20.0223 (16)0.0260 (15)0.0258 (10)0.0044 (12)0.0052 (12)0.0071 (11)
N30.032 (2)0.0288 (17)0.0350 (13)0.0090 (15)0.0051 (15)0.0109 (13)
N40.033 (2)0.0336 (18)0.0272 (14)0.0092 (15)0.0014 (14)0.0112 (13)
N50.034 (2)0.062 (2)0.0523 (18)0.0166 (19)0.0058 (15)0.0300 (15)
N60.041 (2)0.057 (2)0.0267 (13)0.0099 (17)0.0015 (15)0.0037 (14)
O10.0280 (10)0.0323 (9)0.0278 (9)0.0142 (9)0.0037 (8)0.0059 (8)
O20.0315 (15)0.0534 (16)0.0404 (14)0.0173 (13)0.0048 (12)0.0062 (12)
O30.0321 (11)0.0361 (11)0.0274 (8)0.0156 (9)0.0014 (8)0.0050 (8)
O40.055 (2)0.0667 (19)0.0686 (19)0.0307 (17)0.0039 (16)0.0270 (15)
O50.059 (2)0.084 (2)0.0569 (17)0.0309 (18)0.0046 (14)0.0289 (16)
O60.092 (2)0.092 (2)0.0308 (12)0.0423 (19)0.0108 (15)0.0076 (15)
O70.0906 (19)0.0901 (18)0.0420 (14)0.0503 (15)0.0127 (14)0.0113 (14)
OW10.0268 (11)0.0354 (13)0.0367 (13)0.0091 (10)0.0058 (10)0.0039 (11)
Co0.0251 (3)0.0267 (3)0.0236 (3)0.0104 (2)0.0015 (2)0.0059 (2)
Geometric parameters (Å, º) top
C1—N11.314 (5)C17—C181.369 (8)
C1—C21.401 (5)C17—H170.9300
C1—H10.9300C18—C191.379 (6)
C2—C31.365 (6)C18—H180.9300
C2—H20.9300C19—H190.9300
C3—C41.398 (6)C20—C211.379 (5)
C3—H30.9300C20—C251.453 (5)
C4—C121.402 (5)C20—C261.503 (6)
C4—C51.446 (5)C21—C221.389 (6)
C5—C61.366 (6)C21—H210.9300
C5—N31.377 (5)C22—C231.368 (6)
C6—N41.376 (5)C22—N51.454 (5)
C6—C71.420 (5)C23—C241.373 (5)
C7—C81.398 (6)C23—H230.9300
C7—C111.416 (5)C24—C251.440 (5)
C8—C91.368 (6)C24—N61.448 (5)
C8—H80.9300C25—O31.265 (4)
C9—C101.389 (6)C26—O21.220 (5)
C9—H90.9300C26—O11.294 (4)
C10—N21.322 (5)N4—H40.8600
C10—H100.9300N5—O41.215 (5)
C11—N21.356 (5)N5—O51.229 (5)
C11—C121.447 (5)N6—O71.202 (5)
C12—N11.363 (5)N6—O61.209 (5)
C13—N31.319 (5)OW1—H1WA0.81 (6)
C13—N41.349 (5)OW1—H1WB0.80 (5)
C13—C141.475 (5)Co—N12.102 (3)
C14—C191.383 (6)Co—N22.095 (3)
C14—C151.383 (6)Co—O12.050 (2)
C15—C161.388 (6)Co—O1i2.216 (3)
C15—H150.9300Co—O31.991 (3)
C16—C171.359 (8)Co—OW12.139 (3)
C16—H160.9300
N1—C1—C2122.5 (4)C21—C20—C26116.4 (3)
N1—C1—H1118.8C25—C20—C26123.5 (3)
C2—C1—H1118.8C20—C21—C22121.5 (4)
C3—C2—C1119.4 (4)C20—C21—H21119.3
C3—C2—H2120.3C22—C21—H21119.3
C1—C2—H2120.3C23—C22—C21121.1 (4)
C2—C3—C4119.4 (4)C23—C22—N5119.6 (4)
C2—C3—H3120.3C21—C22—N5119.3 (4)
C4—C3—H3120.3C22—C23—C24118.9 (4)
C3—C4—C12117.8 (3)C22—C23—H23120.6
C3—C4—C5125.9 (3)C24—C23—H23120.6
C12—C4—C5116.3 (3)C23—C24—C25123.5 (4)
C6—C5—N3110.5 (3)C23—C24—N6116.4 (4)
C6—C5—C4121.0 (3)C25—C24—N6120.0 (3)
N3—C5—C4128.5 (4)O3—C25—C24121.1 (3)
C5—C6—N4105.3 (3)O3—C25—C20124.0 (3)
C5—C6—C7124.8 (3)C24—C25—C20114.9 (3)
N4—C6—C7129.9 (4)O2—C26—O1122.3 (4)
C8—C7—C11117.7 (3)O2—C26—C20119.4 (3)
C8—C7—C6127.5 (4)O1—C26—C20118.2 (3)
C11—C7—C6114.8 (3)C1—N1—C12118.8 (3)
C9—C8—C7119.6 (4)C1—N1—Co127.4 (2)
C9—C8—H8120.2C12—N1—Co113.2 (2)
C7—C8—H8120.2C10—N2—C11119.2 (3)
C8—C9—C10119.4 (4)C10—N2—Co127.0 (2)
C8—C9—H9120.3C11—N2—Co113.5 (2)
C10—C9—H9120.3C13—N3—C5104.8 (3)
N2—C10—C9122.7 (4)C13—N4—C6107.2 (3)
N2—C10—H10118.7C13—N4—H4126.4
C9—C10—H10118.7C6—N4—H4126.4
N2—C11—C7121.5 (3)O4—N5—O5123.0 (4)
N2—C11—C12116.9 (3)O4—N5—C22119.2 (4)
C7—C11—C12121.7 (3)O5—N5—C22117.9 (4)
N1—C12—C4122.0 (3)O7—N6—O6119.1 (4)
N1—C12—C11116.5 (3)O7—N6—C24121.8 (4)
C4—C12—C11121.5 (3)O6—N6—C24118.9 (3)
N3—C13—N4112.1 (3)C26—O1—Co120.4 (3)
N3—C13—C14125.6 (4)C26—O1—Coi125.8 (2)
N4—C13—C14122.2 (4)Co—O1—Coi100.87 (10)
C19—C14—C15119.4 (4)C25—O3—Co127.0 (2)
C19—C14—C13120.8 (4)Co—OW1—H1WA116 (4)
C15—C14—C13119.8 (4)Co—OW1—H1WB124 (4)
C14—C15—C16119.4 (5)H1WA—OW1—H1WB102 (5)
C14—C15—H15120.3O3—Co—O187.05 (10)
C16—C15—H15120.3O3—Co—N2175.08 (14)
C17—C16—C15120.9 (5)O1—Co—N296.09 (11)
C17—C16—H16119.5O3—Co—N198.70 (11)
C15—C16—H16119.5O1—Co—N1167.77 (12)
C16—C17—C18119.7 (4)N2—Co—N178.95 (12)
C16—C17—H17120.1O3—Co—OW188.76 (12)
C18—C17—H17120.1O1—Co—OW195.00 (13)
C17—C18—C19120.5 (5)N2—Co—OW187.20 (12)
C17—C18—H18119.7N1—Co—OW195.91 (13)
C19—C18—H18119.7O3—Co—O1i95.02 (11)
C18—C19—C14120.0 (5)O1—Co—O1i79.13 (10)
C18—C19—H19120.0N2—Co—O1i89.30 (11)
C14—C19—H19120.0N1—Co—O1i89.56 (11)
C21—C20—C25119.9 (4)OW1—Co—O1i172.82 (12)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O6ii0.862.172.948 (5)150
OW1—H1WA···N3iii0.81 (6)2.03 (6)2.831 (5)172 (5)
OW1—H1WB···O2iv0.80 (5)1.88 (5)2.662 (4)165 (5)
Symmetry codes: (ii) x1, y, z1; (iii) x, y+1, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Co2(C7H2N2O7)2(C19H12N4)2(H2O)2]
Mr1198.76
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)8.2943 (4), 11.0232 (5), 13.6139 (7)
α, β, γ (°)102.690 (4), 107.282 (4), 90.459 (4)
V3)1155.9 (1)
Z1
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.32 × 0.27 × 0.23
Data collection
DiffractometerOxford Diffraction Gemini R Ultra CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.771, 0.829
No. of measured, independent and
observed [I > 2σ(I)] reflections
7153, 4041, 2933
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.111, 1.00
No. of reflections4041
No. of parameters378
No. of restraints168
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.97, 1.00

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Co—N12.102 (3)Co—O1i2.216 (3)
Co—N22.095 (3)Co—O31.991 (3)
Co—O12.050 (2)Co—OW12.139 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O6ii0.862.172.948 (5)150
OW1—H1WA···N3iii0.81 (6)2.03 (6)2.831 (5)172 (5)
OW1—H1WB···O2iv0.80 (5)1.88 (5)2.662 (4)165 (5)
Symmetry codes: (ii) x1, y, z1; (iii) x, y+1, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

The authors thank Jiangsu University for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChe, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184–191.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, D.-M., Li, X.-Y., Wang, X.-C., Li, C.-X. & Liu, C.-B. (2009). Acta Cryst. E65, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteck, E. A. & Day, A. R. (1943). J. Am. Chem. Soc. 65, 452–456.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m751-m752
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds