metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­kis­(seleno­cyanato-κN)bis­­(methanol-κO)tris­­(μ-pyrimidine-κ2N:N′)dicobalt(II)]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24098 Kiel, Germany
*Correspondence e-mail: mwriedt@ac.uni-kiel.de

(Received 25 May 2010; accepted 31 May 2010; online 5 June 2010)

In the title compound, [Co2(NCSe)4(C4H4N2)3(CH3OH)2]n, the CoII ion is coordinated by three N-bonded pyrimidine ligands, two N-bonded seleno­cyanate anions and one O-bonded methanol mol­ecule in an octa­hedral coordination mode. The asymmetric unit consists of one CoII ion, one pyrimidine ligand, two seleno­cyanate anions and one methanol mol­ecule in general positions as well as one pyrimidine ligand located around a twofold rotation axis. In the crystal structure, the pyrimidine ligands bridge [Co(CNSe)2(CH3OH)] units into zigzag-like chains, which are further connected by pyrimidine ligands into layers parallel to (010).

Related literature

For general background, see: Wriedt & Näther (2009a[Wriedt, M. & Näther, C. (2009a). Dalton Trans. pp. 10192-10198.],b[Wriedt, M. & Näther, C. (2009b). Z. Anorg. Allg. Chem. 636, 569-575.]); Wriedt, Sellmer & Näther (2009a[Wriedt, M., Sellmer, S. & Näther, C. (2009a). Dalton Trans. pp. 7975-7984.],b[Wriedt, M., Sellmer, S. & Näther, C. (2009b). Inorg. Chem. 48, 6896-6903.]). For the isotypic structure of a nickel thio­cyanato complex, see: Wriedt et al. (2009[Wriedt, M., Sellmer, S., Jess, I. & Näther, C. (2009). Acta Cryst. E65, m361-m362.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(CNSe)4(C4H4N2)3(CH4O)2]

  • Mr = 421.07

  • Orthorhombic, F d d 2

  • a = 20.4069 (8) Å

  • b = 33.0633 (15) Å

  • c = 8.3750 (3) Å

  • V = 5650.8 (4) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 6.36 mm−1

  • T = 293 K

  • 0.16 × 0.11 × 0.02 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.431, Tmax = 0.885

  • 18545 measured reflections

  • 3391 independent reflections

  • 3067 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.069

  • S = 1.16

  • 3391 reflections

  • 164 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1579 Friedel pairs

  • Flack parameter: 0.057 (13)

Table 1
Selected bond lengths (Å)

Co1—N1 2.191 (3)
Co1—N2i 2.188 (3)
Co1—N11 2.184 (3)
Co1—N21 2.064 (4)
Co1—N31 2.059 (4)
Co1—O41 2.142 (3)
Symmetry code: (i) [-x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have shown that thermal decomposition reactions are an elegante route for the discovering and preparation of new ligand-deficient coordination polymers with defined magnetic properties (Wriedt & Näther, 2009a,b; Wriedt, Sellmer & Näther, 2009a,b). In our ongoing investigation in this field, we have reacted cobalt(II) nitrate, potassium selenocyanate and pyrimidine in methanol. The crystals obtained were identified by single crystal X-ray determination.

The title compound (Fig. 1) represents a two-dimensional layered coordination polymer, which is isotypic to its corresponding nickel(II) thiocyanate analogue reproted recently (Wriedt et al., 2009). The crystal structure consists of µ-1,3-(N,N) pyrimidine bridged zigzag-like cobalt(II) selenocynate chains, which are further linked by µ-1,3-(N,N) pyrimidine ligands into layers (Fig. 2). Within each layer the CoII ions are bridged by three pyrimidine ligands and are further terminally coordinated by two N-bonded selenocyanate anions and one O-bonded methanol molecule in an octahedral coordination mode (Fig. 1). The layers are stacked in the direction of the crystallographic b-axis (Fig. 3). The CoN5O octahedron is markedly distorted with three long Co—Npyrimidine distances in the range of 2.184 (3) to 2.191 (3) Å, one long Co—OMeOH distance of 2.142 (3) Å and two short Co—NCSe distances of 2.059 (4) and 2.064 (4) Å (Table 1). The angles arround the metal centers range between 86.37 (13) to 96.00 (13) and 173.71 (13) to 177.16 (14)°. The shortest intra- and interlayer Co···Co distances amount to 6.0723 (6) and 8.5630 (9) Å, respectively.

Related literature top

For general background, see: Wriedt & Näther (2009a,b); Wriedt, Sellmer & Näther (2009a,b). For the isotypic structure of a nickel thiocyanate complex, see: Wriedt et al. (2009).

Experimental top

Co(NO3)2.6H2O (72.8 mg, 0.25 mmol), KNCSe (72.0 mg, 0.5 mmol) and pyrimidine (20.0 mg, 0.25 mmol) obtained from Alfa Aesar were transfered in a closed snap-vial with methanol (3 ml). After several days at room temperature without stirring, light pink block-shaped single crystals of the title compound were obtained in a mixture with unknown phases.

Refinement top

The O-bound H atom was located in a difference Fourier map and its bond length set to a ideal value and finally refined using a riding model. All other H atoms were positioned with idealized geometry and refined using a riding model, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The absolute structure was determined on the basis of 1579 Friedel pairs.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) -x+1, -y+1/2, z+1/2; (ii) -x+3/2, -y+1/2, z.]
[Figure 2] Fig. 2. A single layer in the title compound viewed along the b axis.
[Figure 3] Fig. 3. Packing of the layers in the title compound viewed along the c axis.
Poly[tetrakis(selenocyanato-κN)bis(methanol-κO)tris(µ- pyrimidine-κ2N:N')dicobalt(II)] top
Crystal data top
[Co2(CNSe)4(C4H4N2)3(CH4O)2]F(000) = 3232
Mr = 421.07Dx = 1.980 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 18545 reflections
a = 20.4069 (8) Åθ = 2.4–28.0°
b = 33.0633 (15) ŵ = 6.36 mm1
c = 8.3750 (3) ÅT = 293 K
V = 5650.8 (4) Å3Block, light pink
Z = 160.16 × 0.11 × 0.02 mm
Data collection top
Stoe IPDS-2
diffractometer
3391 independent reflections
Radiation source: fine-focus sealed tube3067 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 28.0°, θmin = 2.4°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
h = 2626
Tmin = 0.431, Tmax = 0.885k = 4343
18545 measured reflectionsl = 1110
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0286P)2 + 8.8704P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
3391 reflectionsΔρmax = 0.55 e Å3
164 parametersΔρmin = 0.35 e Å3
1 restraintAbsolute structure: Flack (1983), 1579 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.057 (13)
Crystal data top
[Co2(CNSe)4(C4H4N2)3(CH4O)2]V = 5650.8 (4) Å3
Mr = 421.07Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 20.4069 (8) ŵ = 6.36 mm1
b = 33.0633 (15) ÅT = 293 K
c = 8.3750 (3) Å0.16 × 0.11 × 0.02 mm
Data collection top
Stoe IPDS-2
diffractometer
3391 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
3067 reflections with I > 2σ(I)
Tmin = 0.431, Tmax = 0.885Rint = 0.044
18545 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.55 e Å3
S = 1.16Δρmin = 0.35 e Å3
3391 reflectionsAbsolute structure: Flack (1983), 1579 Friedel pairs
164 parametersAbsolute structure parameter: 0.057 (13)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.60574 (2)0.227474 (17)0.78759 (6)0.03270 (12)
N10.55104 (15)0.27269 (10)0.6504 (4)0.0360 (8)
N20.47521 (15)0.28919 (10)0.4458 (5)0.0382 (7)
C10.50711 (17)0.26316 (13)0.5388 (6)0.0374 (9)
H10.49790.23580.52460.045*
C20.4883 (2)0.32854 (13)0.4677 (6)0.0412 (9)
H20.46720.34770.40480.049*
C30.5320 (2)0.34078 (14)0.5813 (6)0.0459 (11)
H30.54100.36810.59590.055*
C40.5623 (2)0.31226 (13)0.6730 (6)0.0434 (10)
H40.59120.32040.75260.052*
N110.69371 (15)0.24124 (11)0.6493 (4)0.0352 (8)
C110.75000.25000.7228 (7)0.0372 (12)
H110.75000.25000.83390.045*
C130.75000.25000.4059 (8)0.061 (2)
H130.75000.25000.29480.074*
C140.6944 (2)0.24140 (17)0.4914 (6)0.0499 (12)
H140.65590.23550.43660.060*
N210.57994 (17)0.18287 (12)0.6270 (5)0.0434 (8)
C210.56005 (17)0.15562 (13)0.5553 (5)0.0381 (9)
Se210.53008 (3)0.114405 (17)0.44108 (7)0.06121 (16)
N310.63231 (16)0.26940 (12)0.9575 (5)0.0428 (8)
C310.63448 (17)0.29139 (13)1.0643 (5)0.0373 (9)
Se310.63665 (3)0.324181 (19)1.23170 (7)0.06461 (17)
O410.66187 (15)0.18255 (10)0.9111 (4)0.0522 (8)
C410.6758 (4)0.1790 (2)1.0749 (8)0.085 (2)
H41A0.63590.17471.13280.127*
H41B0.69640.20341.11180.127*
H41C0.70480.15661.09180.127*
H1O40.68620.17920.83520.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0252 (2)0.0341 (3)0.0388 (3)0.0009 (2)0.0010 (2)0.0043 (2)
N10.0287 (15)0.0336 (18)0.046 (2)0.0015 (13)0.0036 (13)0.0000 (15)
N20.0294 (14)0.0376 (17)0.048 (2)0.0013 (14)0.0020 (14)0.0017 (17)
C10.0270 (16)0.036 (2)0.049 (2)0.0006 (15)0.0018 (18)0.0026 (19)
C20.045 (2)0.033 (2)0.045 (2)0.0008 (17)0.0001 (19)0.0031 (19)
C30.059 (3)0.029 (2)0.049 (3)0.0082 (19)0.003 (2)0.0002 (19)
C40.048 (2)0.039 (2)0.043 (2)0.0022 (18)0.0087 (19)0.0029 (19)
N110.0268 (14)0.0419 (19)0.037 (2)0.0028 (13)0.0005 (13)0.0017 (14)
C110.029 (2)0.050 (3)0.032 (3)0.000 (2)0.0000.000
C130.046 (4)0.108 (7)0.030 (4)0.001 (4)0.0000.000
C140.0295 (19)0.075 (3)0.045 (3)0.005 (2)0.0032 (18)0.003 (2)
N210.0422 (18)0.040 (2)0.048 (2)0.0000 (16)0.0047 (16)0.0091 (17)
C210.0304 (16)0.043 (2)0.042 (2)0.0029 (16)0.0016 (17)0.002 (2)
Se210.0661 (3)0.0505 (3)0.0670 (4)0.0056 (2)0.0100 (3)0.0199 (3)
N310.0419 (18)0.045 (2)0.042 (2)0.0081 (16)0.0024 (16)0.0071 (18)
C310.0276 (17)0.039 (2)0.046 (3)0.0020 (15)0.0036 (16)0.003 (2)
Se310.0715 (3)0.0632 (4)0.0592 (3)0.0041 (3)0.0086 (3)0.0256 (3)
O410.0456 (16)0.054 (2)0.057 (2)0.0146 (15)0.0044 (15)0.0063 (16)
C410.101 (5)0.071 (4)0.082 (5)0.002 (4)0.047 (4)0.007 (3)
Geometric parameters (Å, º) top
Co1—N12.191 (3)N11—C111.335 (4)
Co1—N2i2.188 (3)C11—N11ii1.335 (4)
Co1—N112.184 (3)C11—H110.9300
Co1—N212.064 (4)C13—C141.372 (6)
Co1—N312.059 (4)C13—C14ii1.372 (6)
Co1—O412.142 (3)C13—H130.9300
N1—C11.333 (5)C14—H140.9300
N1—C41.342 (5)N21—C211.157 (5)
N2—C11.331 (5)C21—Se211.774 (5)
N2—C21.341 (5)N31—C311.154 (5)
C1—H10.9300C31—Se311.773 (4)
C2—C31.366 (6)O41—C411.405 (7)
C2—H20.9300O41—H1O40.8139
C3—C41.364 (7)C41—H41A0.9600
C3—H30.9300C41—H41B0.9600
C4—H40.9300C41—H41C0.9600
N11—C141.323 (6)
N31—Co1—N21176.69 (16)C2—C3—H3120.6
N31—Co1—O4189.55 (15)N1—C4—C3121.2 (4)
N21—Co1—O4187.46 (14)N1—C4—H4119.4
N31—Co1—N1190.55 (13)C3—C4—H4119.4
N21—Co1—N1190.75 (14)C14—N11—C11116.8 (4)
O41—Co1—N1187.77 (13)C14—N11—Co1122.6 (3)
N31—Co1—N2i87.12 (14)C11—N11—Co1120.5 (3)
N21—Co1—N2i91.27 (14)N11—C11—N11ii125.1 (5)
O41—Co1—N2i86.37 (13)N11—C11—H11117.5
N11—Co1—N2i173.71 (13)N11ii—C11—H11117.5
N31—Co1—N192.13 (14)C14—C13—C14ii117.1 (6)
N21—Co1—N190.91 (14)C14—C13—H13121.5
O41—Co1—N1177.16 (14)C14ii—C13—H13121.5
N11—Co1—N189.92 (12)N11—C14—C13122.1 (4)
N2i—Co1—N196.00 (13)N11—C14—H14118.9
C1—N1—C4116.4 (4)C13—C14—H14118.9
C1—N1—Co1123.3 (3)C21—N21—Co1169.9 (4)
C4—N1—Co1120.3 (3)N21—C21—Se21178.7 (4)
C1—N2—C2116.8 (4)C31—N31—Co1166.0 (3)
C1—N2—Co1iii124.1 (3)N31—C31—Se31178.4 (4)
C2—N2—Co1iii118.5 (3)C41—O41—Co1129.6 (4)
N2—C1—N1125.9 (4)C41—O41—H1O4128.9
N2—C1—H1117.0Co1—O41—H1O492.4
N1—C1—H1117.0O41—C41—H41A109.5
N2—C2—C3120.8 (4)O41—C41—H41B109.5
N2—C2—H2119.6H41A—C41—H41B109.5
C3—C2—H2119.6O41—C41—H41C109.5
C4—C3—C2118.9 (4)H41A—C41—H41C109.5
C4—C3—H3120.6H41B—C41—H41C109.5
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z; (iii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Co2(CNSe)4(C4H4N2)3(CH4O)2]
Mr421.07
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)293
a, b, c (Å)20.4069 (8), 33.0633 (15), 8.3750 (3)
V3)5650.8 (4)
Z16
Radiation typeMo Kα
µ (mm1)6.36
Crystal size (mm)0.16 × 0.11 × 0.02
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.431, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
18545, 3391, 3067
Rint0.044
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.069, 1.16
No. of reflections3391
No. of parameters164
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.35
Absolute structureFlack (1983), 1579 Friedel pairs
Absolute structure parameter0.057 (13)

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—N12.191 (3)Co1—N212.064 (4)
Co1—N2i2.188 (3)Co1—N312.059 (4)
Co1—N112.184 (3)Co1—O412.142 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

MW thanks the Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie and the Studienstiftung des deutschen Volkes for a PhD scholarship. We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Project 720/3-1). We thank Professor Dr Wolfgang Bensch for the opportunity to use of his experimental facilities.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
First citationWriedt, M. & Näther, C. (2009a). Dalton Trans. pp. 10192–10198.  Web of Science CSD CrossRef
First citationWriedt, M. & Näther, C. (2009b). Z. Anorg. Allg. Chem. 636, 569–575.  Web of Science CSD CrossRef
First citationWriedt, M., Sellmer, S., Jess, I. & Näther, C. (2009). Acta Cryst. E65, m361–m362.  Web of Science CSD CrossRef IUCr Journals
First citationWriedt, M., Sellmer, S. & Näther, C. (2009a). Dalton Trans. pp. 7975–7984.  Web of Science CSD CrossRef
First citationWriedt, M., Sellmer, S. & Näther, C. (2009b). Inorg. Chem. 48, 6896–6903.  Web of Science CSD CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds