organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Fluoro-4-(4-hy­dr­oxy­phen­­oxy)benzo­nitrile

aHangzhou Huadong Medicine Group Biotechnology Institute Co. Ltd, Hangzhou 310015, People's Republic of China, and bState Key Laboratory Breeding Base of Green Chemistry–Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zhangjixu123@163.com

(Received 12 May 2010; accepted 23 June 2010; online 30 June 2010)

The title compound, C13H8FNO2, was synthesized from 3,4-difluoro­benzonitrile and hydro­quinone. The dihedral angle between the two aromatic rings is 70.9 (2)°. In the crystal structure, mol­ecules are linked by O—H⋯N hydrogen bonds, forming zigzag chains.

Related literature

For the herbicidal actvity of hydro­quinone derivatives, see: Bao et al. (2007[Bao, W. J., Wu, Y. G., Mao, C. H., Chen, M. & Huang, M. Z. (2007). Fine Chem. Intermed. 37, 9-13.]); Liu (2002[Liu (2002). Please supply full reference.]). For related structures, see: Sørensen et al. (2009[Sørensen, H. O. & Stuhr-Hansen, N. (2009). Acta Cryst. E65, o13.]); Luo et al. (2009[Luo, S., Zhang, J., Wang, J. & Li, B. (2009). Acta Cryst. E65, o2011.]); Zhang et al. (2009[Zhang, J., Wu, J., Wang, J., Li, Y. & Luo, S. (2009). Acta Cryst. E65, o2340.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8FNO2

  • Mr = 229.20

  • Orthorhombic, P 21 21 21

  • a = 6.1932 (4) Å

  • b = 8.8109 (5) Å

  • c = 20.5269 (12) Å

  • V = 1120.11 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.39 × 0.31 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.959, Tmax = 0.976

  • 10999 measured reflections

  • 1498 independent reflections

  • 928 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.117

  • S = 1.01

  • 1498 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H201⋯N1i 0.82 2.03 2.839 (4) 168
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydroquinone derivatives are important intermediates of herbicide synthesis and have therefore received growing attention recently (Liu, 2002; Bao et al., 2007). Several hydroquinone derivatives were synthesized and investigated by X-ray diffraction in our laboratory. 4-(4-Cyano-2-fluoro-phenoxy)-phenol was obtained reacting hydroquinone and 3,4-difluorobenzonitrile and it's molecular structure is shown in Fig.1.

As it is expected substituents at both aromatic rings are coplanar with repect to the aromatic planes. The dihedral angle between the two planes is 70.66°. The molecule is bent with a C6—O1—C7 angle of 118.0 (2)°. The crystal structure is determined by intermolecular O—H···N interactions. The resulting supramolecular chains of the title compound showing H-bridge interactions is shown in Fig.2.

Related literature top

For the herbicidal actvity of hydroquinone derivatives, see: Bao et al. (2007); Liu (2002). For related structures, see: Sørensen et al. (2009); Luo et al. (2009); Zhang et al. (2009).

Experimental top

A DMSO (10 ml) solution of hydroquinone (0.0012 mol) and NaOH (0.0024 mol) was stirred at room temperature for 5 h. Then the mixture was heated to 80°C and 3,4-difluorobenzonitrile (0.001 mol) was added dropwise and stirred for 10 h. Then the mixture was washed with water (30 ml) and extracted with ethyl acetate (three times). The organic solvent was removed under reduced pressure and the resulting crude product was purified by silica gel chromatography (pentane: ethyl acetate mixtures, yield 86%). Single crystals were obtained by slow evaporation of ethyl acetate at room temperature.

Refinement top

In the absence of significant anomalous dispersion effects, Friedel pairs were averaged. H atoms were placed in calculated positions with C—H = 0.98 Å (sp), C—H = 0.97 Å (sp2), C—H = 0.93 Å (aromatic). All H atoms were included in the final cycles of refinement using a riding model, with Uiso(H)=1.2Ueq of the respective carrier atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of title compound. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x+1/2, -y+2, z+1/2].
3-Fluoro-4-(4-hydroxyphenoxy)benzonitrile top
Crystal data top
C13H8FNO2F(000) = 472
Mr = 229.20Dx = 1.359 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6842 reflections
a = 6.1932 (4) Åθ = 3.0–27.4°
b = 8.8109 (5) ŵ = 0.10 mm1
c = 20.5269 (12) ÅT = 295 K
V = 1120.11 (12) Å3Chunk, colorless
Z = 40.39 × 0.31 × 0.22 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1498 independent reflections
Radiation source: rolling anode928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1111
Tmin = 0.959, Tmax = 0.976l = 2626
10999 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.2503P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1498 reflectionsΔρmax = 0.17 e Å3
156 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (5)
Crystal data top
C13H8FNO2V = 1120.11 (12) Å3
Mr = 229.20Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1932 (4) ŵ = 0.10 mm1
b = 8.8109 (5) ÅT = 295 K
c = 20.5269 (12) Å0.39 × 0.31 × 0.22 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1498 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
928 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.976Rint = 0.032
10999 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
1498 reflectionsΔρmin = 0.15 e Å3
156 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8260 (4)0.8262 (3)0.91021 (10)0.0842 (7)
F10.7477 (4)0.5751 (2)0.84401 (10)0.0994 (7)
C30.2965 (5)0.7967 (4)0.78841 (13)0.0647 (8)
C130.1155 (6)0.7849 (4)0.74589 (16)0.0797 (10)
C70.8277 (5)0.9255 (4)0.96363 (13)0.0662 (8)
O20.8846 (4)1.2010 (3)1.12504 (11)0.0890 (8)
H2010.77751.19441.14840.134*
C40.3341 (5)0.9302 (4)0.82157 (14)0.0706 (8)
H40.24111.01200.81580.085*
C100.8605 (5)1.1076 (3)1.07184 (13)0.0647 (8)
C10.6082 (5)0.6918 (4)0.83712 (14)0.0689 (8)
C80.6707 (5)0.9204 (4)1.01045 (14)0.0720 (8)
H80.55430.85461.00590.086*
C60.6460 (5)0.8233 (4)0.87182 (13)0.0648 (8)
C20.4369 (5)0.6748 (4)0.79642 (14)0.0712 (8)
H20.41410.58390.77440.085*
C90.6853 (5)1.0130 (4)1.06440 (14)0.0718 (9)
H90.57691.01151.09580.086*
C111.0188 (6)1.1111 (4)1.02514 (15)0.0789 (10)
H111.13761.17451.03010.095*
C121.0011 (6)1.0202 (4)0.97087 (15)0.0805 (10)
H121.10761.02310.93900.097*
C50.5080 (6)0.9438 (4)0.86314 (14)0.0710 (9)
H50.53191.03440.88530.085*
N10.0310 (6)0.7800 (4)0.71268 (15)0.1078 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0678 (14)0.1042 (16)0.0805 (13)0.0258 (14)0.0173 (12)0.0286 (13)
F10.0986 (16)0.0867 (12)0.1129 (14)0.0398 (13)0.0214 (12)0.0218 (12)
C30.0581 (18)0.083 (2)0.0534 (14)0.0009 (17)0.0006 (13)0.0069 (16)
C130.076 (2)0.092 (2)0.0710 (19)0.009 (2)0.0057 (19)0.0122 (18)
C70.0610 (18)0.0736 (17)0.0642 (15)0.0089 (17)0.0031 (16)0.0066 (15)
O20.0893 (19)0.0916 (15)0.0861 (15)0.0181 (15)0.0185 (13)0.0244 (14)
C40.069 (2)0.0754 (19)0.0671 (16)0.0133 (18)0.0032 (17)0.0033 (16)
C100.066 (2)0.0648 (17)0.0632 (15)0.0042 (16)0.0052 (16)0.0025 (14)
C10.068 (2)0.0692 (18)0.0697 (17)0.0159 (17)0.0009 (16)0.0051 (17)
C80.065 (2)0.0776 (18)0.0733 (17)0.0135 (18)0.0016 (17)0.0006 (17)
C60.0592 (19)0.0778 (18)0.0572 (15)0.0090 (17)0.0002 (14)0.0069 (15)
C20.072 (2)0.0751 (19)0.0665 (17)0.0011 (18)0.0016 (16)0.0044 (17)
C90.068 (2)0.084 (2)0.0632 (16)0.0165 (19)0.0125 (16)0.0001 (16)
C110.063 (2)0.094 (2)0.0801 (19)0.0177 (19)0.0167 (18)0.0068 (19)
C120.066 (2)0.107 (2)0.0689 (17)0.004 (2)0.0148 (18)0.0094 (19)
C50.072 (2)0.0706 (18)0.0706 (17)0.0124 (17)0.0058 (17)0.0094 (17)
N10.094 (2)0.128 (3)0.101 (2)0.030 (2)0.031 (2)0.034 (2)
Geometric parameters (Å, º) top
O1—C61.365 (4)C10—C111.371 (4)
O1—C71.403 (4)C10—C91.377 (4)
F1—C11.350 (3)C1—C21.359 (4)
C3—C41.379 (5)C1—C61.380 (4)
C3—C21.391 (4)C8—C91.378 (4)
C3—C131.425 (4)C8—H80.9300
C13—N11.135 (4)C6—C51.375 (4)
C7—C121.368 (5)C2—H20.9300
C7—C81.368 (4)C9—H90.9300
O2—C101.375 (3)C11—C121.376 (4)
O2—H2010.8200C11—H110.9300
C4—C51.379 (4)C12—H120.9300
C4—H40.9300C5—H50.9300
C6—O1—C7118.0 (2)C9—C8—H8120.0
C4—C3—C2119.7 (3)O1—C6—C5124.6 (3)
C4—C3—C13119.8 (3)O1—C6—C1116.9 (3)
C2—C3—C13120.5 (3)C5—C6—C1118.4 (3)
N1—C13—C3177.8 (5)C1—C2—C3118.4 (3)
C12—C7—C8120.1 (3)C1—C2—H2120.8
C12—C7—O1118.1 (3)C3—C2—H2120.8
C8—C7—O1121.6 (3)C10—C9—C8119.9 (3)
C10—O2—H201109.5C10—C9—H9120.0
C5—C4—C3120.7 (3)C8—C9—H9120.0
C5—C4—H4119.6C10—C11—C12119.7 (3)
C3—C4—H4119.6C10—C11—H11120.1
C11—C10—O2117.7 (3)C12—C11—H11120.1
C11—C10—C9119.9 (3)C7—C12—C11120.3 (3)
O2—C10—C9122.4 (3)C7—C12—H12119.8
F1—C1—C2118.7 (3)C11—C12—H12119.8
F1—C1—C6118.5 (3)C6—C5—C4119.9 (3)
C2—C1—C6122.8 (3)C6—C5—H5120.0
C7—C8—C9119.9 (3)C4—C5—H5120.0
C7—C8—H8120.0
C6—O1—C7—C12129.3 (3)C4—C3—C2—C10.0 (5)
C6—O1—C7—C856.0 (4)C13—C3—C2—C1179.5 (3)
C2—C3—C4—C50.7 (5)C11—C10—C9—C80.8 (5)
C13—C3—C4—C5179.8 (3)O2—C10—C9—C8179.2 (3)
C12—C7—C8—C91.2 (5)C7—C8—C9—C101.6 (5)
O1—C7—C8—C9175.8 (3)O2—C10—C11—C12179.7 (3)
C7—O1—C6—C527.9 (4)C9—C10—C11—C120.3 (5)
C7—O1—C6—C1155.4 (3)C8—C7—C12—C110.1 (5)
F1—C1—C6—O11.0 (4)O1—C7—C12—C11174.8 (3)
C2—C1—C6—O1179.0 (3)C10—C11—C12—C70.7 (5)
F1—C1—C6—C5177.9 (3)O1—C6—C5—C4178.0 (3)
C2—C1—C6—C52.1 (5)C1—C6—C5—C41.4 (5)
F1—C1—C2—C3178.6 (3)C3—C4—C5—C60.0 (5)
C6—C1—C2—C31.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H201···N1i0.822.032.839 (4)168
Symmetry code: (i) x+1/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H8FNO2
Mr229.20
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)6.1932 (4), 8.8109 (5), 20.5269 (12)
V3)1120.11 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.39 × 0.31 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.959, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
10999, 1498, 928
Rint0.032
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.117, 1.01
No. of reflections1498
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H201···N1i0.822.032.839 (4)168
Symmetry code: (i) x+1/2, y+2, z+1/2.
 

Acknowledgements

The authors are grateful to Mr Jianming Gu for the crystal structure analysis.

References

First citationBao, W. J., Wu, Y. G., Mao, C. H., Chen, M. & Huang, M. Z. (2007). Fine Chem. Intermed. 37, 9–13.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu (2002). Please supply full reference.  Google Scholar
First citationLuo, S., Zhang, J., Wang, J. & Li, B. (2009). Acta Cryst. E65, o2011.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSørensen, H. O. & Stuhr-Hansen, N. (2009). Acta Cryst. E65, o13.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J., Wu, J., Wang, J., Li, Y. & Luo, S. (2009). Acta Cryst. E65, o2340.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds