organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Bi­cyclo­[2.2.1]hept-5-en-2-yl)-1H-pyrrolo­[2,3-b]pyridine

aEberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, bUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and cc-a-i- r biosciences GmbH, Paul-Ehrlich-Strasse 15, 72076 Tübingen, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 7 June 2010; accepted 9 June 2010; online 26 June 2010)

The crystal structure of the title compound, C14H14N2, displays inter­molecular N—H⋯N hydrogen bonds, forming dimers of enanti­omeric mol­ecules via a crystallographic centre of inversion.

Related literature

For the general synthetic procedure for 2-substituted 7-aza­indoles, see Davis et al. (1992[Davis, M. L., Wakewfield, B. J. & Wardellt, J. A. (1992). Tetrahedron, 48, 939-952.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2

  • Mr = 210.27

  • Monoclinic, P 21 /n

  • a = 7.7837 (12) Å

  • b = 8.9867 (14) Å

  • c = 15.973 (3) Å

  • β = 96.408 (8)°

  • V = 1110.3 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 193 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 2274 measured reflections

  • 2113 independent reflections

  • 1940 reflections with I > 2σ(I)

  • Rint = 0.050

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.227

  • S = 1.09

  • 2113 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N7i 0.90 2.05 2.932 (3) 166
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The interest in 7- azaindoles as bioisoster of indole or purine has arisen in conjunction with recent pharmacological programs. Numerous publications on its derivatization reflect the increasing attention paid to this heterocyclic system. The crystal structure of 2-bicyclo[2.2.1]hept-5-en-2-yl-1H-pyrrolo[2,3-b]pyridine, C14H14N2, is characterized by an intermolecular hydrogen bond N1—H1··· N7 (2.05 Å) forming dimers of enantiomeric molecules, which are related by a crystallographic centre of symmetry.

Related literature top

For the general synthetic procedure for 2-substituted 7-azaindoles, see Davis et al. (1992).

Experimental top

3-methylpyridine (4 g, 43 mmol) was added dropwise to a freshly prepared solution of LDA in THF (0.9M) (59 ml, 53 mmol) at 273 K. The resulting suspension was stirred at 273 K for 30 min. Racemic 5-norbornene-2-carbonitrile (5.12 g, 43 mmol) was added dropwise at such a rate that the temperature did not rise above 283 K. Stirring was continued for 60 min. at 273 K. Another portion of LDA solution (59 ml, 53 mmol) was added and stirring was continued overnight at 333 K. The final reaction mixture was allowed to cool and ice-water was added. The mixture was extracted with ethylacetate and the combined extracts were dried (Na2SO4) and the solvent was evaporated under reduced pressure. The residue was subjected to flash chromatography. The title compound was obtained in a yield of 31% (2.834 g, 13.48 mmol). Crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent from a methanolic solution.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom). The hydrogen atom attached to N1 was located in diff. Fourier maps and refined using a fixed isotropic displacement parameter and applying a riding motion model.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of compound I. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.
2-(Bicyclo[2.2.1]hept-5-en-2-yl)-1H-pyrrolo[2,3-b]pyridine top
Crystal data top
C14H14N2F(000) = 448
Mr = 210.27Dx = 1.258 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.7837 (12) Åθ = 65–69°
b = 8.9867 (14) ŵ = 0.58 mm1
c = 15.973 (3) ÅT = 193 K
β = 96.408 (8)°Block, colourless
V = 1110.3 (3) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.050
Radiation source: rotating anodeθmax = 70.0°, θmin = 5.6°
Graphite monochromatorh = 90
ω/2θ scansk = 100
2274 measured reflectionsl = 1919
2113 independent reflections3 standard reflections every 60 min
1940 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.227H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1178P)2 + 1.2641P]
where P = (Fo2 + 2Fc2)/3
2113 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C14H14N2V = 1110.3 (3) Å3
Mr = 210.27Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.7837 (12) ŵ = 0.58 mm1
b = 8.9867 (14) ÅT = 193 K
c = 15.973 (3) Å0.40 × 0.30 × 0.20 mm
β = 96.408 (8)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.050
2274 measured reflections3 standard reflections every 60 min
2113 independent reflections intensity decay: 2%
1940 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.227H-atom parameters constrained
S = 1.09Δρmax = 0.47 e Å3
2113 reflectionsΔρmin = 0.36 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8046 (3)0.5132 (3)0.41997 (15)0.0360 (6)
H10.86910.57990.45190.043*
C20.6512 (3)0.5373 (3)0.36871 (17)0.0362 (6)
C30.5981 (3)0.4080 (3)0.32996 (18)0.0399 (7)
H30.49640.39430.29200.048*
C3A0.7228 (3)0.2965 (3)0.35653 (16)0.0345 (6)
C40.7490 (4)0.1469 (3)0.33978 (17)0.0391 (7)
H40.66920.09290.30200.047*
C50.8949 (4)0.0794 (3)0.37998 (18)0.0411 (7)
H50.91640.02280.37000.049*
C61.0105 (3)0.1604 (3)0.43497 (18)0.0387 (7)
H61.10920.11000.46150.046*
N70.9921 (3)0.3044 (3)0.45291 (14)0.0355 (6)
C7A0.8499 (3)0.3677 (3)0.41290 (16)0.0317 (6)
C80.3998 (4)0.7013 (4)0.3032 (2)0.0472 (8)
H80.38170.63110.25440.057*
C90.5793 (3)0.6919 (3)0.35899 (18)0.0383 (7)
H90.66380.75480.33210.046*
C100.5422 (5)0.7683 (4)0.4420 (2)0.0528 (9)
H10A0.62010.85420.45520.063*
H10B0.55610.69740.48970.063*
C110.3507 (4)0.8199 (4)0.4233 (2)0.0545 (9)
H110.29090.84730.47340.065*
C120.3445 (4)0.9316 (4)0.3555 (2)0.0485 (8)
H120.32321.03500.36120.058*
C130.3743 (4)0.8614 (4)0.2839 (2)0.0532 (9)
H130.37820.90680.23040.064*
C140.2793 (4)0.6819 (4)0.3730 (2)0.0573 (9)
H14A0.30020.58790.40490.069*
H14B0.15540.69130.35180.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0236 (10)0.0376 (12)0.0445 (12)0.0054 (9)0.0063 (9)0.0044 (10)
C20.0249 (12)0.0446 (15)0.0376 (13)0.0056 (11)0.0034 (10)0.0010 (11)
C30.0298 (13)0.0458 (16)0.0417 (14)0.0002 (11)0.0058 (11)0.0010 (12)
C3A0.0302 (13)0.0406 (14)0.0325 (12)0.0005 (11)0.0024 (10)0.0005 (11)
C40.0386 (14)0.0425 (15)0.0365 (14)0.0024 (12)0.0052 (11)0.0048 (12)
C50.0428 (15)0.0378 (15)0.0440 (15)0.0057 (12)0.0109 (12)0.0055 (12)
C60.0319 (13)0.0412 (15)0.0436 (15)0.0109 (11)0.0070 (11)0.0003 (12)
N70.0236 (10)0.0402 (12)0.0422 (12)0.0070 (9)0.0013 (9)0.0024 (10)
C7A0.0246 (12)0.0362 (13)0.0342 (13)0.0042 (10)0.0028 (10)0.0004 (10)
C80.0381 (15)0.0533 (18)0.0484 (17)0.0099 (13)0.0028 (13)0.0038 (14)
C90.0264 (13)0.0452 (16)0.0424 (14)0.0059 (11)0.0006 (11)0.0011 (12)
C100.0521 (19)0.059 (2)0.0451 (16)0.0176 (15)0.0032 (14)0.0003 (15)
C110.0504 (19)0.064 (2)0.0525 (18)0.0156 (16)0.0187 (15)0.0002 (16)
C120.0328 (14)0.0534 (18)0.0593 (19)0.0152 (13)0.0044 (13)0.0024 (14)
C130.0432 (17)0.065 (2)0.0508 (17)0.0135 (15)0.0010 (14)0.0083 (16)
C140.0337 (16)0.068 (2)0.072 (2)0.0002 (15)0.0140 (15)0.0068 (18)
Geometric parameters (Å, º) top
N1—C7A1.362 (3)C8—C141.546 (5)
N1—C21.388 (3)C8—C91.573 (4)
N1—H10.9027C8—H81.0000
C2—C31.359 (4)C9—C101.548 (4)
C2—C91.500 (4)C9—H91.0000
C3—C3A1.426 (4)C10—C111.558 (5)
C3—H30.9500C10—H10A0.9900
C3A—C41.391 (4)C10—H10B0.9900
C3A—C7A1.414 (4)C11—C121.473 (5)
C4—C51.381 (4)C11—C141.547 (5)
C4—H40.9500C11—H111.0000
C5—C61.391 (4)C12—C131.349 (5)
C5—H50.9500C12—H120.9500
C6—N71.336 (4)C13—H130.9500
C6—H60.9500C14—H14A0.9900
N7—C7A1.342 (3)C14—H14B0.9900
C8—C131.480 (5)
C7A—N1—C2108.4 (2)C2—C9—C10115.2 (2)
C7A—N1—H1123.5C2—C9—C8114.0 (2)
C2—N1—H1128.1C10—C9—C8102.9 (2)
C3—C2—N1109.4 (2)C2—C9—H9108.2
C3—C2—C9130.9 (2)C10—C9—H9108.2
N1—C2—C9119.5 (2)C8—C9—H9108.2
C2—C3—C3A107.6 (2)C9—C10—C11103.5 (2)
C2—C3—H3126.2C9—C10—H10A111.1
C3A—C3—H3126.2C11—C10—H10A111.1
C4—C3A—C7A116.9 (2)C9—C10—H10B111.1
C4—C3A—C3137.0 (3)C11—C10—H10B111.1
C7A—C3A—C3106.0 (2)H10A—C10—H10B109.0
C5—C4—C3A117.8 (3)C12—C11—C14100.6 (3)
C5—C4—H4121.1C12—C11—C10107.2 (3)
C3A—C4—H4121.1C14—C11—C1098.1 (3)
C4—C5—C6120.3 (3)C12—C11—H11116.1
C4—C5—H5119.9C14—C11—H11116.1
C6—C5—H5119.9C10—C11—H11116.1
N7—C6—C5124.4 (3)C13—C12—C11108.0 (3)
N7—C6—H6117.8C13—C12—H12126.0
C5—C6—H6117.8C11—C12—H12126.0
C6—N7—C7A114.3 (2)C12—C13—C8108.1 (3)
N7—C7A—N1125.1 (2)C12—C13—H13126.0
N7—C7A—C3A126.3 (2)C8—C13—H13126.0
N1—C7A—C3A108.6 (2)C8—C14—C1194.1 (3)
C13—C8—C14100.5 (3)C8—C14—H14A112.9
C13—C8—C9105.1 (3)C11—C14—H14A112.9
C14—C8—C999.0 (2)C8—C14—H14B112.9
C13—C8—H8116.5C11—C14—H14B112.9
C14—C8—H8116.5H14A—C14—H14B110.3
C9—C8—H8116.5
C7A—N1—C2—C30.6 (3)N1—C2—C9—C1058.2 (4)
C7A—N1—C2—C9175.0 (2)C3—C2—C9—C88.7 (4)
N1—C2—C3—C3A0.6 (3)N1—C2—C9—C8176.8 (2)
C9—C2—C3—C3A174.4 (3)C13—C8—C9—C2166.1 (3)
C2—C3—C3A—C4177.8 (3)C14—C8—C9—C290.4 (3)
C2—C3—C3A—C7A0.3 (3)C13—C8—C9—C1068.6 (3)
C7A—C3A—C4—C50.8 (4)C14—C8—C9—C1035.0 (3)
C3—C3A—C4—C5178.8 (3)C2—C9—C10—C11127.4 (3)
C3A—C4—C5—C60.2 (4)C8—C9—C10—C112.8 (3)
C4—C5—C6—N70.2 (4)C9—C10—C11—C1264.3 (3)
C5—C6—N7—C7A0.1 (4)C9—C10—C11—C1439.5 (3)
C6—N7—C7A—N1179.0 (2)C14—C11—C12—C1332.7 (3)
C6—N7—C7A—C3A0.8 (4)C10—C11—C12—C1369.4 (4)
C2—N1—C7A—N7179.4 (2)C11—C12—C13—C80.3 (4)
C2—N1—C7A—C3A0.4 (3)C14—C8—C13—C1232.2 (3)
C4—C3A—C7A—N71.1 (4)C9—C8—C13—C1270.2 (3)
C3—C3A—C7A—N7179.7 (3)C13—C8—C14—C1148.3 (3)
C4—C3A—C7A—N1178.6 (2)C9—C8—C14—C1159.0 (3)
C3—C3A—C7A—N10.1 (3)C12—C11—C14—C848.6 (3)
C3—C2—C9—C10127.3 (3)C10—C11—C14—C860.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N7i0.902.052.932 (3)166
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H14N2
Mr210.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)7.7837 (12), 8.9867 (14), 15.973 (3)
β (°) 96.408 (8)
V3)1110.3 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.58
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2274, 2113, 1940
Rint0.050
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.227, 1.09
No. of reflections2113
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.36

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N7i0.902.052.932 (3)166
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

The authors would like to thank the Federal Ministry of Education and Research, Germany, Merckle GmbH, Ulm, Germany and the Fonds der Chemischen Industrie, Germany for their generous support of this work.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDavis, M. L., Wakewfield, B. J. & Wardellt, J. A. (1992). Tetrahedron, 48, 939–952.  CrossRef CAS Web of Science Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds