organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1815-o1816

2,6-Di(pyrrolidin-1-yl)pyridinium chloride monohydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 15 June 2010; accepted 22 June 2010; online 26 June 2010)

In the organic cation of the title compound, C13H20N3+·Cl·H2O, the two pyrrolidine rings adopt twisted conformations. The pyridine ring makes dihedral angles of 14.57 (6) and 23.96 (6)° with the mean planes of the pyrrolidine rings. In the crystal structure, pairs of bifurcated inter­molecular O—H⋯Cl hydrogen bonds link the water mol­ecules and chloride anions into an R44(8) ring motif. Inter­molecular N—H⋯Cl, C—H⋯Cl and C—H⋯O hydrogen bonds further inter­connect these rings with the organic cations into a two-dimensional network parallel to the bc plane.

Related literature

For general background to and applications of the title compound, see: Cornell et al. (2003[Cornell, S. E., Jickells, T. D., Cape, J. N., Rowland, A. P. & Duce, R. A. (2003). Atmos. Environ. 37, 2173-2191.]); Fetzner (1998[Fetzner, S. (1998). Appl. Microbiol. Biotechnol. 49, 237-250.]); Padoley et al. (2008[Padoley, K. V., Mudliar, S. N. & Pandey, R. A. (2008). Bioresour. Technol. 99, 4029-4043.]); Xue & Warshawsky (2005[Xue, W. & Warshawsky, D. (2005). Toxicol. Appl. Pharmacol. 206, 73-93.]); Zhu et al. (2003[Zhu, D., Herbert, B. E. & Schlautman, M. A. (2003). Soil Sci. Soc. Am. J. 67, 1370-1377.]). For puckering analysis and ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Al-Dajani et al. (2009[Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2939-o2940.]); Rubin-Preminger & Englert (2007[Rubin-Preminger, J. M. & Englert, U. (2007). Acta Cryst. E63, o757-o758.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H20N3+·Cl·H2O

  • Mr = 271.79

  • Monoclinic, P 21 /c

  • a = 11.5728 (15) Å

  • b = 12.2724 (16) Å

  • c = 11.3622 (16) Å

  • β = 119.214 (2)°

  • V = 1408.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.36 × 0.25 × 0.21 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.911, Tmax = 0.947

  • 20960 measured reflections

  • 5073 independent reflections

  • 4506 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.129

  • S = 1.26

  • 5073 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯Cl1 0.84 2.45 3.2246 (10) 153
O1W—H1W1⋯Cl1 0.91 2.35 3.2502 (11) 169
O1W—H2W1⋯Cl1i 0.82 2.45 3.2594 (11) 171
C1—H1B⋯Cl1 0.97 2.76 3.5100 (11) 135
C7—H7A⋯O1Wii 0.93 2.35 3.2122 (15) 154
C13—H13A⋯Cl1 0.97 2.78 3.5555 (13) 138
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitrogen heterocyclic compounds have received a lot of attention especially by the environment scientists. The main sources of these compounds in the environment are the coal gasification, shale oil extraction and pesticide production (Zhu et al., 2003; Fetzner, 1998). The metabolic activation of the heterocyclic compounds and the DNA damage produced (Xue & Warshawsky, 2005) as well as their roles as a pollutants (Padoley et al., 2008) and their deposition on land and coastal environments (Cornell et al., 2003) have been reported. The title compound can be used for the synthesis of new organometallic complexes and in the field of biological activity and drug design.

The asymmetric unit of the title salt comprises of a protonated 2,6-di(pyrrolidin-1-yl)pyridinium cation, a chloride anion and a water molecule (Fig. 1). In the organic cation, the two pyrrolidine rings adopts twisted conformations (Cremer & Pople, 1975). The puckering parameters are Q = 0.3969 (12) Å, ϕ = 94.02 (16)° for C1-C4/N1; and Q = 0.3732 (13) Å, ϕ = 274.73 (17)° for C10-C13/N3. The essentially planar pyridine ring (C5-C9/N2) makes dihedral angles of 23.96 (6) and 14.57 (6)°, respectively, with the mean planes formed through the C1-C4/N1 and C10-C13/N3 pyrrolidine rings. Comparing to the unprotonated structure (Rubin-Preminger & Englert, 2007), protonation at atom N2 has lead to a slight increase in the C5—N2—C9 angle to 122.97 (8)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to a related pyridine structure (Al-Dajani et al., 2009).

In the crystal structure (Fig. 2), the chloride anions provide the most extensive part as hydrogen bond acceptors. Pairs of intermolecular O1W—H1W1···Cl1 and O1W—H2W1···Cl1 bifurcated hydrogen bonds (Table 1) link the chloride anions and water molecules into R44(8) ring motifs (Bernstein et al., 1995) in a DAAD manner. These ring motifs are further interconnected with the organic cations into two-dimensional arrays parallel to the bc plane via intermolecular N2—H1N2···Cl1, C1—H1B···Cl1, C7—H7A···O1W and C13—H13A···Cl1 hydrogen bonds (Table 1).

Related literature top

For general background to and applications of the title compound, see: Cornell et al. (2003); Fetzner (1998); Padoley et al. (2008); Xue & Warshawsky (2005); Zhu et al. (2003). For puckering analysis and ring conformations, see: Cremer & Pople (1975). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For reference bond-length data, see: Allen et al. (1987). For related structures, see: Al-Dajani et al. (2009); Rubin-Preminger & Englert (2007). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

In a two-neck round bottom flask, pyridine (0.01 mol, 1.0 g) was dissolved in THF (50 ml). The flask was connected to dropping funnel containing anhydrous aluminum chloride (2.7 g, 0.02 mol) dissolved in THF (25 ml) and ended with anhydrous calcium chloride drying tube. In an ice bath, the aluminum chloride solution was added in small portions and the temperature was maintained between 273–278 K during the addition. The mixture was refluxed for 30 mins at 323–328 K under dry condition. Pyrrolidine (0.02 mol, 1.5 g) was added in small portions to the formed red colour reaction mixture. After stirring for 1 h, the mixture was decanted on ice water and the organic layer was extracted with butanol. The solvent was evaporated by using the rotary evaporator. Deep brown single crystals were formed after one week at room temperature and washed with methanol and dried at room temperature.

Refinement top

H atoms bound to N and O atoms were located in a difference Fourier map (N—H = 0.84 and O—H = 0.82–0.91 Å) and constrained to ride with their parent atoms, with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). The remaining H atoms were placed in calculated positions (C—H = 0.93 or 0.97 Å), with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title salt, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal structure of the title salt, viewed along the a axis, showing a two-dimensional array parallel to the bc plane. H atoms not involved in intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.
2,6-Di(pyrrolidin-1-yl)pyridinium chloride monohydrate top
Crystal data top
C13H20N3+·Cl·H2OF(000) = 584
Mr = 271.79Dx = 1.282 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9025 reflections
a = 11.5728 (15) Åθ = 3.6–35.1°
b = 12.2724 (16) ŵ = 0.27 mm1
c = 11.3622 (16) ÅT = 100 K
β = 119.214 (2)°Block, brown
V = 1408.5 (3) Å30.36 × 0.25 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5073 independent reflections
Radiation source: fine-focus sealed tube4506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 32.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.911, Tmax = 0.947k = 1818
20960 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.155P]
where P = (Fo2 + 2Fc2)/3
5073 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C13H20N3+·Cl·H2OV = 1408.5 (3) Å3
Mr = 271.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5728 (15) ŵ = 0.27 mm1
b = 12.2724 (16) ÅT = 100 K
c = 11.3622 (16) Å0.36 × 0.25 × 0.21 mm
β = 119.214 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5073 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4506 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.947Rint = 0.028
20960 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.26Δρmax = 0.85 e Å3
5073 reflectionsΔρmin = 0.47 e Å3
163 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.19322 (2)0.62909 (2)0.66837 (2)0.01949 (8)
N10.36262 (7)0.57142 (7)1.04747 (8)0.01531 (15)
N20.14198 (7)0.52984 (6)0.90169 (8)0.01275 (14)
H1N20.14090.57340.84460.015*
N30.08202 (7)0.50501 (7)0.75519 (8)0.01540 (15)
C10.34608 (9)0.68840 (8)1.01429 (10)0.01729 (17)
H1A0.26530.71631.00900.021*
H1B0.34460.70220.92950.021*
C20.46810 (9)0.73903 (9)1.13225 (11)0.0226 (2)
H2A0.45140.75681.20580.027*
H2B0.49540.80451.10450.027*
C30.57226 (10)0.64951 (9)1.17295 (12)0.0231 (2)
H3A0.60870.64681.11210.028*
H3B0.64370.66011.26440.028*
C40.49368 (9)0.54686 (9)1.16178 (10)0.02016 (19)
H4A0.53250.48351.14350.024*
H4B0.48880.53441.24360.024*
C50.26136 (9)0.50134 (7)1.01015 (9)0.01296 (16)
C60.27123 (9)0.40293 (8)1.07522 (10)0.01685 (17)
H6A0.35160.38021.14670.020*
C70.15781 (10)0.33922 (8)1.03070 (10)0.01769 (18)
H7A0.16370.27351.07400.021*
C80.03737 (10)0.36996 (7)0.92503 (10)0.01668 (18)
H8A0.03720.32660.89840.020*
C90.02951 (8)0.46816 (7)0.85822 (9)0.01324 (16)
C100.20146 (9)0.43731 (9)0.69091 (11)0.02049 (19)
H10A0.23890.42690.75010.025*
H10B0.18270.36670.66570.025*
C110.29411 (10)0.50344 (10)0.56689 (11)0.0251 (2)
H11A0.38570.49260.54400.030*
H11B0.28360.48360.49000.030*
C120.25148 (10)0.62099 (9)0.60917 (11)0.0217 (2)
H12A0.27770.66750.53120.026*
H12B0.28930.64920.66270.026*
C130.10123 (9)0.61292 (8)0.69258 (10)0.01769 (18)
H13A0.06030.61710.63590.021*
H13B0.06540.67000.76010.021*
O1W0.07681 (10)0.38244 (7)0.62242 (9)0.02792 (19)
H1W10.09860.45420.62610.042*
H2W10.00480.38280.55360.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01614 (12)0.02374 (14)0.01981 (13)0.00041 (7)0.00973 (10)0.00133 (8)
N10.0105 (3)0.0137 (3)0.0163 (3)0.0004 (2)0.0023 (3)0.0012 (3)
N20.0111 (3)0.0121 (3)0.0131 (3)0.0003 (2)0.0044 (3)0.0008 (2)
N30.0101 (3)0.0150 (3)0.0172 (3)0.0008 (2)0.0036 (3)0.0021 (3)
C10.0140 (4)0.0132 (4)0.0203 (4)0.0011 (3)0.0050 (3)0.0005 (3)
C20.0140 (4)0.0192 (4)0.0281 (5)0.0034 (3)0.0054 (4)0.0073 (4)
C30.0116 (4)0.0236 (5)0.0275 (5)0.0019 (3)0.0045 (4)0.0028 (4)
C40.0111 (4)0.0231 (5)0.0189 (4)0.0012 (3)0.0016 (3)0.0022 (3)
C50.0115 (3)0.0134 (4)0.0129 (4)0.0006 (3)0.0051 (3)0.0003 (3)
C60.0167 (4)0.0154 (4)0.0165 (4)0.0017 (3)0.0066 (3)0.0032 (3)
C70.0207 (4)0.0133 (4)0.0207 (4)0.0007 (3)0.0114 (3)0.0023 (3)
C80.0171 (4)0.0133 (4)0.0208 (4)0.0020 (3)0.0101 (3)0.0009 (3)
C90.0116 (3)0.0128 (4)0.0150 (4)0.0011 (3)0.0063 (3)0.0031 (3)
C100.0126 (4)0.0214 (4)0.0242 (5)0.0043 (3)0.0063 (3)0.0079 (4)
C110.0119 (4)0.0369 (6)0.0209 (5)0.0010 (4)0.0037 (3)0.0053 (4)
C120.0125 (4)0.0310 (5)0.0200 (5)0.0052 (3)0.0066 (3)0.0054 (4)
C130.0124 (4)0.0204 (4)0.0189 (4)0.0022 (3)0.0066 (3)0.0034 (3)
O1W0.0333 (4)0.0220 (4)0.0218 (4)0.0079 (3)0.0082 (3)0.0016 (3)
Geometric parameters (Å, º) top
N1—C51.3444 (11)C5—C61.3914 (13)
N1—C41.4681 (12)C6—C71.3935 (14)
N1—C11.4729 (13)C6—H6A0.9300
N2—C91.3724 (11)C7—C81.3759 (14)
N2—C51.3740 (11)C7—H7A0.9300
N2—H1N20.8360C8—C91.4034 (13)
N3—C91.3289 (11)C8—H8A0.9300
N3—C101.4659 (12)C10—C111.5229 (16)
N3—C131.4680 (13)C10—H10A0.9700
C1—C21.5261 (13)C10—H10B0.9700
C1—H1A0.9700C11—C121.5244 (17)
C1—H1B0.9700C11—H11A0.9700
C2—C31.5263 (15)C11—H11B0.9700
C2—H2A0.9700C12—C131.5241 (14)
C2—H2B0.9700C12—H12A0.9700
C3—C41.5223 (15)C12—H12B0.9700
C3—H3A0.9700C13—H13A0.9700
C3—H3B0.9700C13—H13B0.9700
C4—H4A0.9700O1W—H1W10.9117
C4—H4B0.9700O1W—H2W10.8189
C5—N1—C4120.85 (8)C5—C6—H6A120.8
C5—N1—C1123.94 (7)C7—C6—H6A120.8
C4—N1—C1112.06 (7)C8—C7—C6122.44 (9)
C9—N2—C5122.97 (8)C8—C7—H7A118.8
C9—N2—H1N2114.9C6—C7—H7A118.8
C5—N2—H1N2119.1C7—C8—C9118.56 (9)
C9—N3—C10121.35 (8)C7—C8—H8A120.7
C9—N3—C13125.88 (8)C9—C8—H8A120.7
C10—N3—C13112.77 (8)N3—C9—N2118.17 (8)
N1—C1—C2102.89 (8)N3—C9—C8123.19 (8)
N1—C1—H1A111.2N2—C9—C8118.64 (8)
C2—C1—H1A111.2N3—C10—C11103.05 (9)
N1—C1—H1B111.2N3—C10—H10A111.2
C2—C1—H1B111.2C11—C10—H10A111.2
H1A—C1—H1B109.1N3—C10—H10B111.2
C1—C2—C3103.21 (8)C11—C10—H10B111.2
C1—C2—H2A111.1H10A—C10—H10B109.1
C3—C2—H2A111.1C10—C11—C12103.85 (8)
C1—C2—H2B111.1C10—C11—H11A111.0
C3—C2—H2B111.1C12—C11—H11A111.0
H2A—C2—H2B109.1C10—C11—H11B111.0
C4—C3—C2102.66 (8)C12—C11—H11B111.0
C4—C3—H3A111.2H11A—C11—H11B109.0
C2—C3—H3A111.2C13—C12—C11103.30 (8)
C4—C3—H3B111.2C13—C12—H12A111.1
C2—C3—H3B111.2C11—C12—H12A111.1
H3A—C3—H3B109.1C13—C12—H12B111.1
N1—C4—C3102.77 (8)C11—C12—H12B111.1
N1—C4—H4A111.2H12A—C12—H12B109.1
C3—C4—H4A111.2N3—C13—C12102.53 (8)
N1—C4—H4B111.2N3—C13—H13A111.3
C3—C4—H4B111.2C12—C13—H13A111.3
H4A—C4—H4B109.1N3—C13—H13B111.3
N1—C5—N2117.40 (8)C12—C13—H13B111.3
N1—C5—C6123.70 (8)H13A—C13—H13B109.2
N2—C5—C6118.90 (8)H1W1—O1W—H2W199.6
C5—C6—C7118.41 (9)
C5—N1—C1—C2150.43 (9)C6—C7—C8—C91.27 (15)
C4—N1—C1—C29.59 (11)C10—N3—C9—N2171.36 (8)
N1—C1—C2—C330.83 (11)C13—N3—C9—N28.05 (14)
C1—C2—C3—C440.78 (11)C10—N3—C9—C89.15 (14)
C5—N1—C4—C3176.31 (9)C13—N3—C9—C8171.44 (9)
C1—N1—C4—C315.59 (11)C5—N2—C9—N3177.66 (8)
C2—C3—C4—N134.27 (11)C5—N2—C9—C81.85 (13)
C4—N1—C5—N2179.62 (8)C7—C8—C9—N3179.98 (9)
C1—N1—C5—N222.02 (13)C7—C8—C9—N20.49 (14)
C4—N1—C5—C60.56 (14)C9—N3—C10—C11170.91 (9)
C1—N1—C5—C6157.79 (9)C13—N3—C10—C118.57 (11)
C9—N2—C5—N1176.46 (8)N3—C10—C11—C1228.80 (10)
C9—N2—C5—C63.37 (13)C10—C11—C12—C1338.50 (11)
N1—C5—C6—C7177.33 (9)C9—N3—C13—C12165.45 (9)
N2—C5—C6—C72.48 (14)C10—N3—C13—C1215.10 (11)
C5—C6—C7—C80.23 (15)C11—C12—C13—N332.44 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Cl10.842.453.2246 (10)153
O1W—H1W1···Cl10.912.353.2502 (11)169
O1W—H2W1···Cl1i0.822.453.2594 (11)171
C1—H1B···Cl10.972.763.5100 (11)135
C7—H7A···O1Wii0.932.353.2122 (15)154
C13—H13A···Cl10.972.783.5555 (13)138
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H20N3+·Cl·H2O
Mr271.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.5728 (15), 12.2724 (16), 11.3622 (16)
β (°) 119.214 (2)
V3)1408.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.36 × 0.25 × 0.21
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.911, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
20960, 5073, 4506
Rint0.028
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.129, 1.26
No. of reflections5073
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.47

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Cl10.84002.45003.2246 (10)153.00
O1W—H1W1···Cl10.91002.35003.2502 (11)169.00
O1W—H2W1···Cl1i0.82002.45003.2594 (11)171.00
C1—H1B···Cl10.97002.76003.5100 (11)135.00
C7—H7A···O1Wii0.93002.35003.2122 (15)154.00
C13—H13A···Cl10.97002.78003.5555 (13)138.00
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: nornisah@usm.my.

§Thomson Reuters ResearcherID: C-7576-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NM gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815025). HKF and JHG thank USM for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationAl-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2939–o2940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCornell, S. E., Jickells, T. D., Cape, J. N., Rowland, A. P. & Duce, R. A. (2003). Atmos. Environ. 37, 2173–2191.  Web of Science CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFetzner, S. (1998). Appl. Microbiol. Biotechnol. 49, 237–250.  Web of Science CrossRef CAS Google Scholar
First citationPadoley, K. V., Mudliar, S. N. & Pandey, R. A. (2008). Bioresour. Technol. 99, 4029–4043.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRubin-Preminger, J. M. & Englert, U. (2007). Acta Cryst. E63, o757–o758.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, W. & Warshawsky, D. (2005). Toxicol. Appl. Pharmacol. 206, 73–93.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhu, D., Herbert, B. E. & Schlautman, M. A. (2003). Soil Sci. Soc. Am. J. 67, 1370–1377.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1815-o1816
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds