organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3R,3aS,6R,6aR)-3-(1-Nitro­eth­yl)perhydro­furo[3,2-b]furan-3,6-diol

aSchool of Pharmacy Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: jyzhang2004@126.com

(Received 22 March 2010; accepted 14 June 2010; online 18 June 2010)

The mol­ecule of the title compound, C8H13NO6, a sucrose derivative, consists of two fused tetra­hydro­furan rings having the cis arrangement at the ring junctions, giving a V-shaped mol­ecule. An intra­molecular O—H⋯O inter­action occurs. Inter­molecular O—H⋯O hydrogen bonds help to stabilize the crystal structure.

Related literature

For applications of sucrose and its derivatives, see: Chang et al. (2001[Chang, C. W. T., Hui, Y. & Elchert, B. (2001). Tetrahedron Lett. 42, 7019-7023.]); Liu et al. (2004[Liu, F.-W., Liu, H.-M., Yu, K. & Zhang, J.-Y. (2004). Carbohydr. Res. 339, 2651-2656.]); Stutz et al. (1999[Stutz, A. E. (1999). Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond. Weinheim: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C8H13NO6

  • Mr = 219.19

  • Monoclinic, P 21

  • a = 6.959 (4) Å

  • b = 5.525 (3) Å

  • c = 12.384 (6) Å

  • β = 97.077 (7)°

  • V = 472.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.42 × 0.23 × 0.14 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.946, Tmax = 0.982

  • 2416 measured reflections

  • 935 independent reflections

  • 743 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.129

  • S = 0.98

  • 932 reflections

  • 137 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.82 2.06 2.785 (5) 147
O4—H4⋯O3ii 0.82 2.05 2.777 (4) 147
O4—H4⋯O1 0.82 2.23 2.655 (4) 113
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Sugar derivatives are an important class of compounds having a broad spectrum of applications in the chemical, biochemical, medicinal (Chang et al., 2001), and pharmaceutical fields,(Liu et al., 2004; Stutz et al., 1999) Here we report a structure of a novel Sugar derivatives. To develop new applications for sucrose and its derivatives, structural modifications of sucrose have been extensively investigated. As a contribution to the sucrose chemistry, we report here the crystal structure of the title compound.

Molecular structure of title compound is shown in Fig.1. Torsion angle C(6)—C(1)—C(2)—C(3) is -120.4. Intermolecular hydrogen bonds links molecules in crystal structure into three-dimensional structure.

Related literature top

For applications of sucrose and its derivatives, see: Chang et al. (2001); Liu et al. (2004); Stutz et al. (1999).

Experimental top

Nitroethane and a catalytic amount of Et3N were added to a stirring solution of 1,4:3,6-dianhydrofructose in EtOH. The mixture was stirred at room temperature for 4 h, and evaporated under reduced pressure to dryness. The residue was recrystallized with EtOH to give title compound as a white crystal.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H = 0.96 Å (methylene) or 0.93 Å (aromatic), 0.82 Å (hydroxyl) and Uiso(H) =1.2Ueq(C). Because the absolute configuration was established by the structure determination of a compound containing a chiral reference molecule of known absolute configuration, we have merged the Friedels in the refinement.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing a three-dimensional structure, linked by hydrogen bonds(dashed lines).
(3R,3aS,6R,6aR)- 3-(1-Nitroethyl)perhydrofuro[3,2-b]furan-3,6-diol top
Crystal data top
C8H13NO6F(000) = 232
Mr = 219.19Dx = 1.541 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.959 (4) ÅCell parameters from 895 reflections
b = 5.525 (3) Åθ = 3.0–22.5°
c = 12.384 (6) ŵ = 0.13 mm1
β = 97.077 (7)°T = 298 K
V = 472.5 (4) Å3Colorless, needlelike
Z = 20.42 × 0.23 × 0.14 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
935 independent reflections
Radiation source: fine-focus sealed tube743 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 48
Tmin = 0.946, Tmax = 0.982k = 66
2416 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0843P)2]
where P = (Fo2 + 2Fc2)/3
932 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C8H13NO6V = 472.5 (4) Å3
Mr = 219.19Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.959 (4) ŵ = 0.13 mm1
b = 5.525 (3) ÅT = 298 K
c = 12.384 (6) Å0.42 × 0.23 × 0.14 mm
β = 97.077 (7)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
935 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
743 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.982Rint = 0.059
2416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.129H-atom parameters constrained
S = 0.98Δρmax = 0.21 e Å3
932 reflectionsΔρmin = 0.19 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9397 (6)0.4876 (9)0.8645 (3)0.0565 (11)
O10.3548 (4)0.4642 (5)0.61605 (19)0.0468 (7)
O20.5198 (4)0.0131 (5)0.7607 (2)0.0485 (7)
O30.3353 (5)0.0495 (6)0.55654 (18)0.0586 (9)
H30.38360.17130.58650.088*
O40.7338 (4)0.5239 (6)0.6667 (2)0.0475 (8)
H40.66960.51920.60660.071*
O51.0171 (6)0.6770 (9)0.8438 (3)0.0869 (13)
O61.0297 (6)0.3057 (9)0.8937 (3)0.0867 (12)
C10.4230 (5)0.3930 (7)0.7261 (3)0.0402 (10)
H10.37530.50170.77950.048*
C20.3545 (6)0.1339 (7)0.7386 (3)0.0419 (9)
H20.27520.12390.79860.050*
C30.2290 (7)0.0763 (8)0.6291 (3)0.0469 (10)
H3A0.11080.01110.64070.056*
C40.1837 (6)0.3261 (9)0.5835 (3)0.0512 (11)
H4A0.15580.32090.50490.061*
H4B0.07320.39490.61330.061*
C50.6784 (6)0.1117 (8)0.7223 (4)0.0463 (10)
H5A0.68220.07850.64560.056*
H5B0.80010.06080.76250.056*
C60.6445 (5)0.3804 (7)0.7401 (3)0.0390 (9)
C70.7219 (5)0.4776 (9)0.8547 (3)0.0454 (10)
H70.67490.64400.85960.055*
C80.6571 (6)0.3377 (10)0.9479 (3)0.0553 (12)
H8A0.70020.17300.94500.083*
H8B0.51840.34130.94290.083*
H8C0.71150.40941.01540.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.056 (2)0.072 (3)0.0384 (18)0.008 (2)0.0049 (16)0.008 (2)
O10.0563 (16)0.0408 (16)0.0409 (14)0.0072 (14)0.0031 (12)0.0095 (13)
O20.0592 (17)0.0359 (16)0.0496 (15)0.0079 (14)0.0034 (13)0.0026 (14)
O30.099 (2)0.0404 (17)0.0355 (14)0.0131 (17)0.0040 (15)0.0019 (14)
O40.0544 (16)0.0548 (19)0.0330 (13)0.0059 (15)0.0037 (12)0.0004 (13)
O50.072 (2)0.102 (3)0.081 (3)0.026 (3)0.012 (2)0.000 (2)
O60.069 (2)0.099 (3)0.090 (3)0.029 (2)0.001 (2)0.007 (3)
C10.051 (2)0.039 (2)0.0301 (18)0.010 (2)0.0039 (16)0.0002 (16)
C20.047 (2)0.043 (2)0.0353 (19)0.004 (2)0.0038 (16)0.0008 (18)
C30.057 (2)0.042 (2)0.041 (2)0.003 (2)0.0034 (18)0.0019 (18)
C40.052 (3)0.054 (3)0.044 (2)0.003 (2)0.0067 (18)0.001 (2)
C50.051 (2)0.042 (2)0.046 (2)0.007 (2)0.0061 (18)0.0064 (19)
C60.050 (2)0.038 (2)0.0289 (19)0.0013 (18)0.0054 (16)0.0012 (15)
C70.052 (2)0.048 (2)0.0360 (18)0.008 (2)0.0031 (16)0.002 (2)
C80.070 (3)0.064 (3)0.033 (2)0.006 (3)0.0090 (18)0.0003 (19)
Geometric parameters (Å, º) top
N1—O61.215 (6)C2—H20.9800
N1—O51.219 (6)C3—C41.509 (6)
N1—C71.506 (5)C3—H3A0.9800
O1—C41.430 (5)C4—H4A0.9700
O1—C11.442 (4)C4—H4B0.9700
O2—C21.408 (5)C5—C61.523 (6)
O2—C51.431 (5)C5—H5A0.9700
O3—C31.415 (5)C5—H5B0.9700
O3—H30.8200C6—C71.550 (5)
O4—C61.407 (5)C7—C81.504 (6)
O4—H40.8200C7—H70.9800
C1—C21.523 (6)C8—H8A0.9600
C1—C61.531 (5)C8—H8B0.9600
C1—H10.9800C8—H8C0.9600
C2—C31.552 (5)
O6—N1—O5123.2 (4)O1—C4—H4B110.8
O6—N1—C7118.1 (5)C3—C4—H4B110.8
O5—N1—C7118.7 (4)H4A—C4—H4B108.9
C4—O1—C1106.6 (3)O2—C5—C6106.4 (3)
C2—O2—C5107.6 (3)O2—C5—H5A110.5
C3—O3—H3109.5C6—C5—H5A110.5
C6—O4—H4109.5O2—C5—H5B110.5
O1—C1—C2106.4 (3)C6—C5—H5B110.5
O1—C1—C6109.2 (3)H5A—C5—H5B108.6
C2—C1—C6105.6 (3)O4—C6—C5111.5 (3)
O1—C1—H1111.8O4—C6—C1114.8 (3)
C2—C1—H1111.8C5—C6—C1101.5 (3)
C6—C1—H1111.8O4—C6—C7105.3 (3)
O2—C2—C1107.7 (3)C5—C6—C7115.3 (3)
O2—C2—C3114.2 (3)C1—C6—C7108.6 (3)
C1—C2—C3104.7 (3)C8—C7—N1110.5 (3)
O2—C2—H2110.0C8—C7—C6114.9 (4)
C1—C2—H2110.0N1—C7—C6108.6 (3)
C3—C2—H2110.0C8—C7—H7107.5
O3—C3—C4108.2 (3)N1—C7—H7107.5
O3—C3—C2111.9 (3)C6—C7—H7107.5
C4—C3—C2102.0 (3)C7—C8—H8A109.5
O3—C3—H3A111.4C7—C8—H8B109.5
C4—C3—H3A111.4H8A—C8—H8B109.5
C2—C3—H3A111.4C7—C8—H8C109.5
O1—C4—C3104.7 (3)H8A—C8—H8C109.5
O1—C4—H4A110.8H8B—C8—H8C109.5
C3—C4—H4A110.8
C4—O1—C1—C227.7 (4)O2—C5—C6—C785.8 (4)
C4—O1—C1—C6141.2 (3)O1—C1—C6—O424.1 (4)
C5—O2—C2—C122.0 (4)C2—C1—C6—O4138.1 (3)
C5—O2—C2—C393.8 (4)O1—C1—C6—C596.3 (3)
O1—C1—C2—O2117.5 (3)C2—C1—C6—C517.7 (3)
C6—C1—C2—O21.5 (4)O1—C1—C6—C7141.7 (3)
O1—C1—C2—C34.4 (4)C2—C1—C6—C7104.3 (4)
C6—C1—C2—C3120.4 (3)O6—N1—C7—C840.8 (5)
O2—C2—C3—O320.6 (5)O5—N1—C7—C8138.7 (4)
C1—C2—C3—O396.9 (4)O6—N1—C7—C686.2 (4)
O2—C2—C3—C4136.1 (4)O5—N1—C7—C694.4 (5)
C1—C2—C3—C418.6 (4)O4—C6—C7—C8175.5 (3)
C1—O1—C4—C340.5 (4)C5—C6—C7—C852.1 (5)
O3—C3—C4—O182.4 (4)C1—C6—C7—C861.0 (5)
C2—C3—C4—O135.8 (4)O4—C6—C7—N151.2 (4)
C2—O2—C5—C634.2 (4)C5—C6—C7—N172.2 (4)
O2—C5—C6—O4154.1 (3)C1—C6—C7—N1174.7 (3)
O2—C5—C6—C131.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.822.062.785 (5)147
O4—H4···O3ii0.822.052.777 (4)147
O4—H4···O10.822.232.655 (4)113
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H13NO6
Mr219.19
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)6.959 (4), 5.525 (3), 12.384 (6)
β (°) 97.077 (7)
V3)472.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.42 × 0.23 × 0.14
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.946, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
2416, 935, 743
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.129, 0.98
No. of reflections932
No. of parameters137
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19
Absolute structure parameter1 (3)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.822.062.785 (5)147.0
O4—H4···O3ii0.822.052.777 (4)147.2
O4—H4···O10.822.232.655 (4)112.7
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1.
 

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 20572103).

References

First citationChang, C. W. T., Hui, Y. & Elchert, B. (2001). Tetrahedron Lett. 42, 7019–7023.  Web of Science CrossRef CAS Google Scholar
First citationLiu, F.-W., Liu, H.-M., Yu, K. & Zhang, J.-Y. (2004). Carbohydr. Res. 339, 2651–2656.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationStutz, A. E. (1999). Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond. Weinheim: Wiley-VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds