organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­cyclo­hexyl-N,N′-di­methyl-N′′-(4-nitro­benzo­yl)phospho­ric tri­amide

aDepartment of Chemistry, Islamic Azad University-Zanjan Branch, PO Box 49195-467, Zanjan, Iran, and bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran
*Correspondence e-mail: fahimeh_sabbaghi@yahoo.com

(Received 31 May 2010; accepted 17 June 2010; online 23 June 2010)

The P atom in the title compound, C21H33N4O4P, is in a slightly distorted tetra­hedral coordination environment and the phosphoryl and carbonyl groups are anti to each other. The environment of each N atom is essentially planar (average angles of 119.9 and 118.4°). In the crystal structure, the H atom of the C(=O)NHP(=O) group is involved in an inter­molecular –P=O⋯H–N– hydrogen bond, forming centrosymmetric dimers.

Related literature

For applications of compounds containing the –C(=O)NHP(=O)– skeleton, see: Gholivand et al. (2010[Gholivand, K., Mahzouni, H. R., Pourayoubi, M. & Amiri, S. (2010). Inorg. Chim. Acta, 363, 2318-2324.]). For related structures, see: Pourayoubi & Sabbaghi (2009[Pourayoubi, M. & Sabbaghi, F. (2009). J. Chem. Crystallogr. 39, 874-880.]); Sabbaghi et al. (2010[Sabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010). Acta Cryst. E66, o344.]).

[Scheme 1]

Experimental

Crystal data
  • C21H33N4O4P

  • Mr = 436.48

  • Triclinic, [P \overline 1]

  • a = 8.6118 (16) Å

  • b = 10.838 (2) Å

  • c = 12.711 (2) Å

  • α = 93.089 (4)°

  • β = 106.792 (4)°

  • γ = 95.105 (3)°

  • V = 1127.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 120 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.969

  • 12417 measured reflections

  • 5955 independent reflections

  • 4603 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.103

  • S = 1.00

  • 5955 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 1.91 2.7622 (18) 167
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carbacylamidophosphates with a –C(O)NHP(O)– skeleton have attracted attention because of their roles as the O,O'-donor ligands for metal complexation (Gholivand et al., 2010). In the previous work, the structures of two compounds with a P(O)[NHC(O)C6H4(4-NO2)] moiety have been investigated: P(O)[NHC(O)C6H4(4-NO2)][N(CH(CH3)2)(CH2C6H5)]2 (Pourayoubi & Sabbaghi, 2009) and P(O)[NHC(O)C6H4(4-NO2)][NHC6H11]2 (Sabbaghi et al., 2010). Here, we report the synthesis and crystal structure of a third compound, P(O)[NHC(O)C6H4(4-NO2)][N(CH3)(C6H11)]2. The phosphoryl and carbonyl groups are anti to each other and the phosphorus atom has a slightly distorted tetrahedral configuration (Fig 1). The bond angles around the P atom are in the range of 104.81 (7)°-117.28 (8)°. The P1–N3 and P1–N4 bond lengths (1.6315 (15) Å and 1.6446 (15) Å) are shorter than the P1–N1 bond (1.6859 (14) Å). The environment of the nitrogen atoms is essentially planar; the angles C8–N3–P1, C8–N3–C9 and P1–N3–C9 are 124.25 (12)°, 117.46 (14)° and 118.02 (11)°, respectively (with average = 119.9°). A similar result was obtained for the bond angles around N4 atom (average = 118.4°). Furthermore, the angle C1–N1–P1 is 125.20 (12)°. The PO bond length of 1.4834 (13) Å is standard for phosphoramidate compounds. The hydrogen atom of the C(O)NHP(O) group is involved in an intermolecular –PO···H—N– hydrogen bond (see Table 1) to form a centrosymmetric dimeric aggregate. A view of crystal packing along the a axis is shown in Fig. 2.

Related literature top

For the applications of compounds containing the –C(O)NHP(O)– skeleton, see: Gholivand et al. (2010). For related structures, see: Pourayoubi & Sabbaghi (2009); Sabbaghi et al. (2010).

Experimental top

4-NO2—C6H4C(O)NHP(O)Cl2 was prepared according to the procedure of literature (Sabbaghi et al., 2010). To a solution of (0.566 g, 2 mmol) 4-NO2C6H4C(O)NHP(O)Cl2 in CH3CN (20 ml), a solution of N-methylcyclohexylamine (0.906 g, 8 mmol) in CH3CN (5 ml) was added dropwise at 273K. After 4 h the solvent was removed in vacuum. Single crystals were obtained from a solution of title compound in CH3CN and n-C6H14 (4:1) after slow evaporation at room temperature. IR (KBr, cm-1): 3063, 2930, 2855, 1685, 1523, 1453, 1340, 1267, 1183, 1106, 1004, 848, 712.

Refinement top

The hydrogen atom of the NH group was seen in a difference Fourier map and included with N-H = 0.86Å. The other H atoms were placed in calculated positions C-H = 0.95-1.00Å. All hydrogen atoms were refined in a riding-model approximation with Uiso(H) parameters equal to 1.2 Ueq(Ci), or for methyl groups equal to 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level (H(C) atoms are omitted for clarity).
[Figure 2] Fig. 2. Part of the crystal structure of the title compound viewed approximately along the a axis showing centrosymmetric H-bonded (dashed lines) dimers. Only H atoms involved in hydrogen bonds are shown.
N,N'-Dicyclohexyl-N,N'-dimethyl-N''-(4-nitrobenzoyl)phosphoric triamide top
Crystal data top
C21H33N4O4PZ = 2
Mr = 436.48F(000) = 468
Triclinic, P1Dx = 1.286 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6118 (16) ÅCell parameters from 2045 reflections
b = 10.838 (2) Åθ = 2–25°
c = 12.711 (2) ŵ = 0.16 mm1
α = 93.089 (4)°T = 120 K
β = 106.792 (4)°Prism, colorless
γ = 95.105 (3)°0.40 × 0.20 × 0.20 mm
V = 1127.4 (4) Å3
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
5955 independent reflections
Radiation source: fine-focus sealed tube4603 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 29.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1111
Tmin = 0.959, Tmax = 0.969k = 1414
12417 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: mixed
wR(F2) = 0.103H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.001P)2 + 1.3P]
where P = (Fo2 + 2Fc2)/3
5955 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C21H33N4O4Pγ = 95.105 (3)°
Mr = 436.48V = 1127.4 (4) Å3
Triclinic, P1Z = 2
a = 8.6118 (16) ÅMo Kα radiation
b = 10.838 (2) ŵ = 0.16 mm1
c = 12.711 (2) ÅT = 120 K
α = 93.089 (4)°0.40 × 0.20 × 0.20 mm
β = 106.792 (4)°
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
5955 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4603 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.969Rint = 0.027
12417 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.00Δρmax = 0.39 e Å3
5955 reflectionsΔρmin = 0.43 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.45851 (5)0.82031 (4)0.58020 (3)0.02026 (10)
O10.48700 (15)0.85007 (11)0.47427 (9)0.0235 (3)
O20.37428 (15)0.88786 (11)0.78908 (10)0.0269 (3)
O30.60736 (19)1.44437 (13)1.10559 (11)0.0390 (3)
O40.7761 (2)1.49349 (14)1.01319 (12)0.0453 (4)
N10.47053 (17)0.95776 (12)0.65239 (11)0.0199 (3)
H1N0.49651.02180.62110.024*
N20.6661 (2)1.42572 (14)1.02941 (12)0.0305 (3)
N30.28286 (18)0.73684 (13)0.55664 (11)0.0240 (3)
N40.59191 (18)0.74205 (13)0.66231 (12)0.0247 (3)
C10.43680 (19)0.97284 (15)0.75065 (13)0.0200 (3)
C20.48973 (19)1.09818 (15)0.81576 (13)0.0197 (3)
C30.5913 (2)1.19046 (16)0.78890 (14)0.0246 (3)
H3A0.62191.17940.72320.030*
C40.6481 (2)1.29926 (16)0.85839 (14)0.0263 (4)
H4A0.71821.36260.84130.032*
C50.5999 (2)1.31276 (15)0.95283 (13)0.0232 (3)
C60.4977 (2)1.22431 (16)0.98073 (14)0.0244 (3)
H6A0.46531.23691.04550.029*
C70.4429 (2)1.11573 (16)0.91131 (13)0.0229 (3)
H7A0.37291.05280.92920.027*
C80.2412 (2)0.65393 (18)0.63379 (15)0.0335 (4)
H8A0.19060.57350.59430.050*
H8B0.16460.69090.66680.050*
H8C0.34050.64180.69200.050*
C90.1508 (2)0.75515 (15)0.45520 (13)0.0217 (3)
H9A0.19090.82810.42170.026*
C100.0048 (2)0.78658 (18)0.47985 (15)0.0306 (4)
H10A0.02000.86210.53180.037*
H10B0.04640.71740.51560.037*
C110.1361 (2)0.80878 (19)0.37426 (16)0.0342 (4)
H11A0.23790.82350.39200.041*
H11B0.09950.88390.34300.041*
C120.1699 (2)0.69742 (19)0.28905 (17)0.0382 (5)
H12A0.21740.62430.31720.046*
H12B0.25040.71600.22020.046*
C130.0139 (3)0.6671 (2)0.26434 (16)0.0393 (5)
H13A0.02800.73710.22960.047*
H13B0.03820.59230.21160.047*
C140.1171 (2)0.64358 (17)0.37005 (15)0.0297 (4)
H14A0.07980.56850.40100.036*
H14B0.21890.62850.35250.036*
C150.6164 (3)0.62277 (18)0.61104 (17)0.0404 (5)
H15A0.60890.55680.65970.061*
H15B0.72430.62940.59930.061*
H15C0.53210.60290.54000.061*
C160.7269 (2)0.79996 (16)0.75819 (13)0.0226 (3)
H16A0.67970.86080.79890.027*
C170.7955 (2)0.70390 (17)0.83827 (14)0.0279 (4)
H17A0.84550.64250.80160.034*
H17B0.70590.65900.86010.034*
C180.9245 (2)0.76902 (19)0.94149 (15)0.0329 (4)
H18A0.87180.82480.98160.040*
H18B0.97140.70590.99130.040*
C191.0606 (2)0.8443 (2)0.91066 (16)0.0363 (5)
H19A1.12120.78740.87800.044*
H19B1.13800.88910.97800.044*
C200.9923 (2)0.9376 (2)0.82845 (17)0.0361 (5)
H20A1.08220.98150.80630.043*
H20B0.94241.00030.86400.043*
C210.8637 (2)0.87251 (19)0.72583 (15)0.0306 (4)
H21A0.81790.93520.67520.037*
H21B0.91560.81500.68660.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0236 (2)0.0180 (2)0.01684 (19)0.00119 (16)0.00277 (16)0.00079 (15)
O10.0288 (6)0.0206 (6)0.0198 (6)0.0005 (5)0.0062 (5)0.0009 (4)
O20.0322 (7)0.0247 (6)0.0249 (6)0.0000 (5)0.0108 (5)0.0037 (5)
O30.0589 (10)0.0343 (8)0.0216 (6)0.0068 (7)0.0091 (6)0.0052 (5)
O40.0593 (10)0.0356 (8)0.0337 (8)0.0152 (7)0.0101 (7)0.0085 (6)
N10.0244 (7)0.0173 (6)0.0174 (6)0.0013 (5)0.0058 (5)0.0014 (5)
N20.0421 (9)0.0260 (8)0.0192 (7)0.0045 (7)0.0025 (7)0.0004 (6)
N30.0262 (7)0.0240 (7)0.0177 (7)0.0025 (6)0.0004 (6)0.0062 (5)
N40.0282 (8)0.0191 (7)0.0223 (7)0.0061 (6)0.0002 (6)0.0017 (5)
C10.0182 (7)0.0223 (8)0.0181 (7)0.0043 (6)0.0023 (6)0.0028 (6)
C20.0193 (8)0.0213 (8)0.0172 (7)0.0047 (6)0.0028 (6)0.0011 (6)
C30.0277 (9)0.0273 (9)0.0186 (8)0.0001 (7)0.0075 (7)0.0002 (6)
C40.0310 (9)0.0256 (9)0.0203 (8)0.0020 (7)0.0058 (7)0.0010 (7)
C50.0274 (9)0.0218 (8)0.0164 (7)0.0046 (7)0.0001 (6)0.0009 (6)
C60.0280 (9)0.0282 (9)0.0176 (8)0.0082 (7)0.0063 (7)0.0025 (6)
C70.0243 (8)0.0246 (8)0.0199 (8)0.0042 (7)0.0061 (6)0.0033 (6)
C80.0365 (10)0.0313 (10)0.0265 (9)0.0097 (8)0.0021 (8)0.0110 (7)
C90.0236 (8)0.0219 (8)0.0166 (7)0.0012 (6)0.0014 (6)0.0028 (6)
C100.0325 (10)0.0333 (10)0.0259 (9)0.0075 (8)0.0077 (8)0.0015 (7)
C110.0286 (10)0.0361 (10)0.0372 (11)0.0117 (8)0.0058 (8)0.0063 (8)
C120.0287 (10)0.0354 (11)0.0394 (11)0.0051 (8)0.0076 (8)0.0013 (9)
C130.0389 (11)0.0436 (12)0.0246 (9)0.0118 (9)0.0075 (8)0.0085 (8)
C140.0275 (9)0.0305 (9)0.0250 (9)0.0079 (7)0.0021 (7)0.0045 (7)
C150.0504 (13)0.0275 (10)0.0350 (11)0.0144 (9)0.0020 (9)0.0058 (8)
C160.0219 (8)0.0252 (8)0.0189 (8)0.0050 (6)0.0024 (6)0.0005 (6)
C170.0269 (9)0.0315 (9)0.0246 (9)0.0057 (7)0.0048 (7)0.0068 (7)
C180.0291 (10)0.0429 (11)0.0238 (9)0.0041 (8)0.0019 (7)0.0091 (8)
C190.0229 (9)0.0521 (13)0.0301 (10)0.0038 (8)0.0011 (8)0.0071 (9)
C200.0248 (9)0.0440 (12)0.0354 (10)0.0041 (8)0.0039 (8)0.0093 (9)
C210.0274 (9)0.0392 (10)0.0259 (9)0.0048 (8)0.0074 (7)0.0100 (8)
Geometric parameters (Å, º) top
P1—O11.4834 (13)C10—H10B0.9900
P1—N31.6315 (15)C11—C121.526 (3)
P1—N41.6446 (15)C11—H11A0.9900
P1—N11.6859 (14)C11—H11B0.9900
O2—C11.220 (2)C12—C131.524 (3)
O3—N21.231 (2)C12—H12A0.9900
O4—N21.219 (2)C12—H12B0.9900
N1—C11.366 (2)C13—C141.534 (2)
N1—H1N0.8628C13—H13A0.9900
N2—C51.483 (2)C13—H13B0.9900
N3—C81.462 (2)C14—H14A0.9900
N3—C91.489 (2)C14—H14B0.9900
N4—C151.476 (2)C15—H15A0.9800
N4—C161.483 (2)C15—H15B0.9800
C1—C21.513 (2)C15—H15C0.9800
C2—C31.391 (2)C16—C211.525 (2)
C2—C71.395 (2)C16—C171.531 (2)
C3—C41.395 (2)C16—H16A1.0000
C3—H3A0.9500C17—C181.540 (3)
C4—C51.383 (2)C17—H17A0.9900
C4—H4A0.9500C17—H17B0.9900
C5—C61.374 (2)C18—C191.524 (3)
C6—C71.391 (2)C18—H18A0.9900
C6—H6A0.9500C18—H18B0.9900
C7—H7A0.9500C19—C201.525 (3)
C8—H8A0.9800C19—H19A0.9900
C8—H8B0.9800C19—H19B0.9900
C8—H8C0.9800C20—C211.534 (3)
C9—C101.523 (2)C20—H20A0.9900
C9—C141.527 (2)C20—H20B0.9900
C9—H9A1.0000C21—H21A0.9900
C10—C111.531 (3)C21—H21B0.9900
C10—H10A0.9900
O1—P1—N3109.91 (7)H11A—C11—H11B108.0
O1—P1—N4117.28 (8)C13—C12—C11111.06 (16)
N3—P1—N4105.39 (8)C13—C12—H12A109.4
O1—P1—N1106.20 (7)C11—C12—H12A109.4
N3—P1—N1113.38 (8)C13—C12—H12B109.4
N4—P1—N1104.81 (7)C11—C12—H12B109.4
C1—N1—P1125.20 (12)H12A—C12—H12B108.0
C1—N1—H1N120.1C12—C13—C14111.07 (17)
P1—N1—H1N114.6C12—C13—H13A109.4
O4—N2—O3124.33 (16)C14—C13—H13A109.4
O4—N2—C5117.72 (15)C12—C13—H13B109.4
O3—N2—C5117.95 (16)C14—C13—H13B109.4
C8—N3—C9117.46 (14)H13A—C13—H13B108.0
C8—N3—P1124.25 (12)C9—C14—C13110.50 (15)
C9—N3—P1118.02 (11)C9—C14—H14A109.5
C15—N4—C16116.81 (14)C13—C14—H14A109.5
C15—N4—P1114.39 (12)C9—C14—H14B109.5
C16—N4—P1124.01 (11)C13—C14—H14B109.5
O2—C1—N1122.38 (15)H14A—C14—H14B108.1
O2—C1—C2119.89 (15)N4—C15—H15A109.5
N1—C1—C2117.61 (14)N4—C15—H15B109.5
C3—C2—C7119.80 (15)H15A—C15—H15B109.5
C3—C2—C1122.95 (15)N4—C15—H15C109.5
C7—C2—C1117.06 (15)H15A—C15—H15C109.5
C2—C3—C4119.99 (16)H15B—C15—H15C109.5
C2—C3—H3A120.0N4—C16—C21113.46 (14)
C4—C3—H3A120.0N4—C16—C17111.50 (14)
C5—C4—C3118.47 (16)C21—C16—C17110.48 (14)
C5—C4—H4A120.8N4—C16—H16A107.0
C3—C4—H4A120.8C21—C16—H16A107.0
C6—C5—C4122.96 (16)C17—C16—H16A107.0
C6—C5—N2118.42 (15)C16—C17—C18110.00 (15)
C4—C5—N2118.59 (16)C16—C17—H17A109.7
C5—C6—C7118.05 (16)C18—C17—H17A109.7
C5—C6—H6A121.0C16—C17—H17B109.7
C7—C6—H6A121.0C18—C17—H17B109.7
C6—C7—C2120.72 (16)H17A—C17—H17B108.2
C6—C7—H7A119.6C19—C18—C17111.18 (16)
C2—C7—H7A119.6C19—C18—H18A109.4
N3—C8—H8A109.5C17—C18—H18A109.4
N3—C8—H8B109.5C19—C18—H18B109.4
H8A—C8—H8B109.5C17—C18—H18B109.4
N3—C8—H8C109.5H18A—C18—H18B108.0
H8A—C8—H8C109.5C18—C19—C20111.10 (16)
H8B—C8—H8C109.5C18—C19—H19A109.4
N3—C9—C10112.56 (14)C20—C19—H19A109.4
N3—C9—C14111.46 (14)C18—C19—H19B109.4
C10—C9—C14111.44 (15)C20—C19—H19B109.4
N3—C9—H9A107.0H19A—C19—H19B108.0
C10—C9—H9A107.0C19—C20—C21111.01 (17)
C14—C9—H9A107.0C19—C20—H20A109.4
C9—C10—C11111.17 (15)C21—C20—H20A109.4
C9—C10—H10A109.4C19—C20—H20B109.4
C11—C10—H10A109.4C21—C20—H20B109.4
C9—C10—H10B109.4H20A—C20—H20B108.0
C11—C10—H10B109.4C16—C21—C20110.50 (15)
H10A—C10—H10B108.0C16—C21—H21A109.5
C12—C11—C10111.01 (16)C20—C21—H21A109.5
C12—C11—H11A109.4C16—C21—H21B109.5
C10—C11—H11A109.4C20—C21—H21B109.5
C12—C11—H11B109.4H21A—C21—H21B108.1
C10—C11—H11B109.4
O1—P1—N1—C1173.62 (13)C4—C5—C6—C71.1 (3)
N3—P1—N1—C152.83 (15)N2—C5—C6—C7176.72 (15)
N4—P1—N1—C161.59 (15)C5—C6—C7—C20.6 (2)
O1—P1—N3—C8156.29 (15)C3—C2—C7—C60.5 (2)
N4—P1—N3—C829.03 (17)C1—C2—C7—C6174.68 (15)
N1—P1—N3—C885.04 (17)C8—N3—C9—C1049.4 (2)
O1—P1—N3—C929.95 (15)P1—N3—C9—C10124.79 (14)
N4—P1—N3—C9157.20 (12)C8—N3—C9—C1476.7 (2)
N1—P1—N3—C988.73 (13)P1—N3—C9—C14109.15 (15)
O1—P1—N4—C1555.86 (16)N3—C9—C10—C11178.22 (15)
N3—P1—N4—C1566.78 (16)C14—C9—C10—C1155.7 (2)
N1—P1—N4—C15173.32 (14)C9—C10—C11—C1255.4 (2)
O1—P1—N4—C1698.72 (15)C10—C11—C12—C1355.9 (2)
N3—P1—N4—C16138.64 (14)C11—C12—C13—C1456.5 (2)
N1—P1—N4—C1618.74 (16)N3—C9—C14—C13177.44 (16)
P1—N1—C1—O29.5 (2)C10—C9—C14—C1355.9 (2)
P1—N1—C1—C2166.63 (11)C12—C13—C14—C956.2 (2)
O2—C1—C2—C3166.11 (16)C15—N4—C16—C2181.6 (2)
N1—C1—C2—C310.1 (2)P1—N4—C16—C2172.46 (19)
O2—C1—C2—C78.9 (2)C15—N4—C16—C1743.9 (2)
N1—C1—C2—C7174.87 (14)P1—N4—C16—C17162.03 (13)
C7—C2—C3—C41.1 (3)N4—C16—C17—C18174.96 (15)
C1—C2—C3—C4173.82 (16)C21—C16—C17—C1857.9 (2)
C2—C3—C4—C50.5 (3)C16—C17—C18—C1956.7 (2)
C3—C4—C5—C60.6 (3)C17—C18—C19—C2055.6 (2)
C3—C4—C5—N2177.27 (16)C18—C19—C20—C2155.6 (2)
O4—N2—C5—C6168.44 (17)N4—C16—C21—C20175.75 (15)
O3—N2—C5—C611.0 (2)C17—C16—C21—C2058.2 (2)
O4—N2—C5—C49.5 (2)C19—C20—C21—C1656.9 (2)
O3—N2—C5—C4171.09 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.861.912.7622 (18)167
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC21H33N4O4P
Mr436.48
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.6118 (16), 10.838 (2), 12.711 (2)
α, β, γ (°)93.089 (4), 106.792 (4), 95.105 (3)
V3)1127.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.959, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
12417, 5955, 4603
Rint0.027
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.103, 1.00
No. of reflections5955
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.43

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.861.912.7622 (18)167
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

Support of this investigation by Islamic Azad University-Zanjan Branch is gratefully acknowledged.

References

First citationBruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGholivand, K., Mahzouni, H. R., Pourayoubi, M. & Amiri, S. (2010). Inorg. Chim. Acta, 363, 2318–2324.  Web of Science CSD CrossRef CAS Google Scholar
First citationPourayoubi, M. & Sabbaghi, F. (2009). J. Chem. Crystallogr. 39, 874–880.  Web of Science CSD CrossRef CAS Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010). Acta Cryst. E66, o344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds