organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{3-[1-(3,4-Di­chloro­phen­yl)eth­yl]-1,3-thia­zolidin-2-yl­­idene}malono­nitrile

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: qknhs@yahoo.com.cn

(Received 7 June 2010; accepted 21 June 2010; online 26 June 2010)

In the title compound, C14H11Cl2N3S, the thia­zole ring is in an envelope conformation with the –CH2– group bonded to the S atom forming the flap. The crystal structure is stabilized by weak inter­molecular C—H⋯Cl and C—H⋯N hydrogen bonds.

Related literature

For the biological activity of thia­zole componds, see: Hense et al. (2002[Hense, A., Fischer, R. & Gesing, E. R. (2002). WO Patent 2002096872.]). For the synthesis of the title compound, see: Jeschke et al. (2002[Jeschke, P., Beck, M. E. & Kraemer, W. (2002). DE Patent 10119423.]). For a related structure, see: Cunico, et al. (2007[Cunico, W., Gomes, C. R. B., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o411-o414.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11Cl2N3S

  • Mr = 324.22

  • Monoclinic, P 21 /n

  • a = 7.5900 (15) Å

  • b = 14.957 (3) Å

  • c = 12.783 (3) Å

  • β = 99.03 (3)°

  • V = 1433.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 113 K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.922, Tmax = 0.943

  • 8837 measured reflections

  • 2493 independent reflections

  • 2374 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.102

  • S = 1.17

  • 2493 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N3i 0.99 2.57 3.477 (4) 153
C7—H7A⋯Cl2ii 1.00 2.83 3.623 (3) 137
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, compounds containing the 2-(thiazolidin-2-ylidene)malononitrile group have attracted much interest because compounds containing a thiazole ring system are well known as efficient insecticides and pesticides (Hense, et al., 2002). In an attempt to synthesize these types of compounds with higher biological activity the title compound (I) was synthesized and its crystal structure is reported herein.

In (I) (Fig. 1), the bond lengths angles are normal and in a agreement with those common to a previously reported structure (Cunico, et al., 2007). The thiazole ring is in an envelope conformation with the -CH2- group bonded to the S atom forming the flap. The crystal structure is stabilized by weak intermolecular C—H···Cl and C—H···N hydrogen bonds.

Related literature top

For the biological activity of thiazole componds, see: Hense et al. (2002). For the synthesis of the title compound, see: Jeschke et al. (2002). For a related structure, see: Cunico, et al. (2007).

Experimental top

Following the procedure of Jeschke, et al. (2002) 2-(thiazolidin-2-ylidene)malononitrile 15.1 g(0.10 mol) and potassium carbonate 16.6 g(0.12 mmol) were dissolved in N,N-dimethylformamide(DMF) (55 ml) and stirred 0.5 h at room temperature. Then 1,2-dichloro-4-(1-chloroethyl)benzene 20.9 g (0.10 mmol) was added, dropwise within 2 h at 318 K. The mixture was then stirred for 8 h at 358 K. After cooling at room temperature, 20 ml of water was added. The mixture was extracted with CH2Cl2 (15 ml) and the organic layer was washed with water and dried over anhydrous sodium sulfate. The excess CH2Cl2 was removed on a water vacuum pump obtaining the oily product which was rerystallized from methanol to afford the title compound 26.8 g (83% yield). Single crystals suitable for X-ray measurement were obtained by recrystallization of the title compound from a mixture of acetone and methanol at room temperature.

Refinement top

All C-bound H atoms were placed in calculated positions, with C—H = 0.95–1.00 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
2-{3-[1-(3,4-Dichlorophenyl)ethyl]-1,3-thiazolidin-2-ylidene}malononitrile top
Crystal data top
C14H11Cl2N3SF(000) = 664
Mr = 324.22Dx = 1.503 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3119 reflections
a = 7.5900 (15) Åθ = 2.1–27.2°
b = 14.957 (3) ŵ = 0.59 mm1
c = 12.783 (3) ÅT = 113 K
β = 99.03 (3)°Prism, black
V = 1433.2 (5) Å30.14 × 0.12 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
2493 independent reflections
Radiation source: fine-focus sealed tube2374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.7°
ω scansh = 98
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.922, Tmax = 0.943l = 1513
8837 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0287P)2 + 2.7247P]
where P = (Fo2 + 2Fc2)/3
2493 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H11Cl2N3SV = 1433.2 (5) Å3
Mr = 324.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5900 (15) ŵ = 0.59 mm1
b = 14.957 (3) ÅT = 113 K
c = 12.783 (3) Å0.14 × 0.12 × 0.10 mm
β = 99.03 (3)°
Data collection top
Rigaku Saturn
diffractometer
2493 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2374 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.943Rint = 0.032
8837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.17Δρmax = 0.98 e Å3
2493 reflectionsΔρmin = 0.31 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64889 (9)0.08386 (5)0.14263 (5)0.01840 (19)
Cl10.92712 (10)0.58799 (5)0.13883 (6)0.0241 (2)
Cl20.74727 (10)0.62951 (5)0.09604 (6)0.0243 (2)
N10.7016 (3)0.19511 (15)0.01236 (18)0.0156 (5)
N20.2888 (3)0.16439 (17)0.1598 (2)0.0228 (6)
N30.1985 (3)0.01685 (18)0.1358 (2)0.0276 (6)
C10.5784 (4)0.13843 (17)0.0353 (2)0.0146 (6)
C20.8768 (4)0.1872 (2)0.0228 (2)0.0194 (6)
H2A0.95080.14140.01920.023*
H2B0.94100.24500.01500.023*
C30.8370 (4)0.1601 (2)0.1382 (2)0.0199 (6)
H3A0.94080.12970.16070.024*
H3B0.80470.21270.18430.024*
C40.4095 (4)0.11831 (18)0.0098 (2)0.0161 (6)
C50.3460 (4)0.14437 (18)0.0850 (2)0.0174 (6)
C60.2938 (4)0.06174 (19)0.0798 (2)0.0184 (6)
C70.6790 (4)0.26246 (19)0.0927 (2)0.0177 (6)
H7A0.55390.25750.10760.021*
C80.8041 (4)0.2423 (2)0.1955 (2)0.0242 (7)
H8A0.78850.18000.21600.036*
H8B0.77620.28210.25160.036*
H8C0.92790.25180.18500.036*
C90.6999 (4)0.35513 (18)0.0458 (2)0.0158 (6)
C100.7943 (4)0.42212 (19)0.1048 (2)0.0178 (6)
H10A0.85060.41030.17520.021*
C110.8072 (4)0.50688 (18)0.0613 (2)0.0173 (6)
C120.7274 (4)0.52438 (19)0.0414 (2)0.0187 (6)
C130.6305 (4)0.45847 (19)0.1013 (2)0.0197 (6)
H13A0.57430.47080.17160.024*
C140.6165 (4)0.37428 (19)0.0575 (2)0.0186 (6)
H14A0.54940.32910.09810.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0204 (4)0.0169 (4)0.0180 (4)0.0004 (3)0.0032 (3)0.0022 (3)
Cl10.0280 (4)0.0179 (4)0.0271 (4)0.0050 (3)0.0062 (3)0.0057 (3)
Cl20.0257 (4)0.0176 (4)0.0315 (4)0.0026 (3)0.0111 (3)0.0080 (3)
N10.0142 (12)0.0136 (12)0.0192 (12)0.0005 (9)0.0035 (9)0.0004 (9)
N20.0222 (13)0.0214 (13)0.0257 (14)0.0027 (10)0.0068 (11)0.0004 (11)
N30.0236 (14)0.0267 (15)0.0314 (15)0.0036 (11)0.0010 (12)0.0027 (12)
C10.0171 (14)0.0111 (13)0.0149 (13)0.0047 (10)0.0002 (11)0.0030 (10)
C20.0134 (14)0.0202 (15)0.0250 (15)0.0009 (11)0.0038 (11)0.0006 (12)
C30.0170 (14)0.0221 (15)0.0217 (15)0.0002 (12)0.0063 (12)0.0011 (12)
C40.0170 (14)0.0119 (13)0.0183 (14)0.0010 (11)0.0005 (11)0.0021 (11)
C50.0141 (14)0.0124 (14)0.0248 (16)0.0001 (10)0.0001 (12)0.0037 (12)
C60.0177 (14)0.0183 (15)0.0198 (15)0.0008 (12)0.0047 (12)0.0037 (12)
C70.0170 (14)0.0177 (15)0.0193 (15)0.0024 (11)0.0061 (11)0.0039 (11)
C80.0330 (17)0.0201 (15)0.0191 (15)0.0044 (13)0.0032 (13)0.0022 (12)
C90.0137 (13)0.0135 (14)0.0213 (15)0.0006 (10)0.0058 (11)0.0005 (11)
C100.0168 (14)0.0203 (15)0.0174 (14)0.0020 (11)0.0059 (11)0.0023 (11)
C110.0151 (14)0.0128 (14)0.0255 (15)0.0006 (11)0.0074 (11)0.0044 (11)
C120.0186 (14)0.0162 (14)0.0232 (15)0.0030 (11)0.0095 (12)0.0035 (12)
C130.0178 (14)0.0222 (15)0.0195 (15)0.0039 (12)0.0040 (11)0.0016 (12)
C140.0149 (14)0.0186 (15)0.0219 (15)0.0018 (11)0.0019 (11)0.0032 (12)
Geometric parameters (Å, º) top
S1—C11.751 (3)C4—C61.429 (4)
S1—C31.821 (3)C7—C81.526 (4)
Cl1—C111.732 (3)C7—C91.528 (4)
Cl2—C121.736 (3)C7—H7A1.0000
N1—C11.336 (3)C8—H8A0.9800
N1—C71.468 (3)C8—H8B0.9800
N1—C21.474 (4)C8—H8C0.9800
N2—C51.150 (4)C9—C101.384 (4)
N3—C61.151 (4)C9—C141.402 (4)
C1—C41.404 (4)C10—C111.394 (4)
C2—C31.514 (4)C10—H10A0.9500
C2—H2A0.9900C11—C121.382 (4)
C2—H2B0.9900C12—C131.386 (4)
C3—H3A0.9900C13—C141.389 (4)
C3—H3B0.9900C13—H13A0.9500
C4—C51.427 (4)C14—H14A0.9500
C1—S1—C391.05 (13)N1—C7—H7A107.6
C1—N1—C7127.2 (2)C8—C7—H7A107.6
C1—N1—C2114.2 (2)C9—C7—H7A107.6
C7—N1—C2118.6 (2)C7—C8—H8A109.5
N1—C1—C4129.0 (3)C7—C8—H8B109.5
N1—C1—S1112.0 (2)H8A—C8—H8B109.5
C4—C1—S1119.0 (2)C7—C8—H8C109.5
N1—C2—C3105.5 (2)H8A—C8—H8C109.5
N1—C2—H2A110.6H8B—C8—H8C109.5
C3—C2—H2A110.6C10—C9—C14118.9 (3)
N1—C2—H2B110.6C10—C9—C7121.3 (2)
C3—C2—H2B110.6C14—C9—C7119.7 (2)
H2A—C2—H2B108.8C9—C10—C11120.3 (3)
C2—C3—S1103.50 (19)C9—C10—H10A119.9
C2—C3—H3A111.1C11—C10—H10A119.9
S1—C3—H3A111.1C12—C11—C10120.2 (3)
C2—C3—H3B111.1C12—C11—Cl1121.6 (2)
S1—C3—H3B111.1C10—C11—Cl1118.2 (2)
H3A—C3—H3B109.0C11—C12—C13120.3 (3)
C1—C4—C5125.5 (2)C11—C12—Cl2120.0 (2)
C1—C4—C6118.4 (3)C13—C12—Cl2119.6 (2)
C5—C4—C6115.9 (2)C12—C13—C14119.3 (3)
N2—C5—C4177.5 (3)C12—C13—H13A120.3
N3—C6—C4179.0 (3)C14—C13—H13A120.3
N1—C7—C8110.0 (2)C13—C14—C9120.9 (3)
N1—C7—C9108.5 (2)C13—C14—H14A119.6
C8—C7—C9115.4 (2)C9—C14—H14A119.6
C7—N1—C1—C411.5 (4)C1—N1—C7—C9114.5 (3)
C2—N1—C1—C4169.1 (3)C2—N1—C7—C964.9 (3)
C7—N1—C1—S1169.1 (2)N1—C7—C9—C10138.4 (3)
C2—N1—C1—S110.3 (3)C8—C7—C9—C1014.5 (4)
C3—S1—C1—N111.7 (2)N1—C7—C9—C1444.2 (3)
C3—S1—C1—C4168.8 (2)C8—C7—C9—C14168.0 (3)
C1—N1—C2—C332.4 (3)C14—C9—C10—C110.6 (4)
C7—N1—C2—C3147.1 (2)C7—C9—C10—C11178.1 (2)
N1—C2—C3—S137.5 (2)C9—C10—C11—C120.7 (4)
C1—S1—C3—C228.5 (2)C9—C10—C11—Cl1180.0 (2)
N1—C1—C4—C511.2 (5)C10—C11—C12—C131.5 (4)
S1—C1—C4—C5168.2 (2)Cl1—C11—C12—C13179.3 (2)
N1—C1—C4—C6173.6 (3)C10—C11—C12—Cl2178.8 (2)
S1—C1—C4—C67.0 (3)Cl1—C11—C12—Cl20.4 (3)
C1—C4—C5—N2169 (7)C11—C12—C13—C140.9 (4)
C6—C4—C5—N216 (7)Cl2—C12—C13—C14179.4 (2)
C1—C4—C6—N3147 (20)C12—C13—C14—C90.5 (4)
C5—C4—C6—N337 (20)C10—C9—C14—C131.2 (4)
C1—N1—C7—C8118.5 (3)C7—C9—C14—C13178.8 (3)
C2—N1—C7—C862.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N3i0.992.573.477 (4)153
C7—H7A···Cl2ii1.002.833.623 (3)137
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H11Cl2N3S
Mr324.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)7.5900 (15), 14.957 (3), 12.783 (3)
β (°) 99.03 (3)
V3)1433.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.922, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
8837, 2493, 2374
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.102, 1.17
No. of reflections2493
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 0.31

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N3i0.992.573.477 (4)153.1
C7—H7A···Cl2ii1.002.833.623 (3)136.9
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
 

References

First citationCunico, W., Gomes, C. R. B., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o411–o414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHense, A., Fischer, R. & Gesing, E. R. (2002). WO Patent 2002096872.  Google Scholar
First citationJeschke, P., Beck, M. E. & Kraemer, W. (2002). DE Patent 10119423.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds