organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(N,N′-di­phenyl­benzamidinium) fumarate

aUniversity of Latvia, Kr. Valdemara 48, Riga, LV 1013, Latvia
*Correspondence e-mail: veidis@lu.lv

(Received 24 March 2010; accepted 13 May 2010; online 9 June 2010)

The crystal structure of the title compound, 2C19H17N2+·C4H2O42−, consists of centrosymmetric trimers built up of two crystallographically independent N,N′-diphenyl­benzamid­in­ium cations and one fumarate dianion, which is located on a centre of inversion. The components of the trimers are linked by N—H⋯O hydrogen bonding. In the cation, the outer rings make dihedral angles of 53.66 (5) and 78.38 (5)° with the central ring. The two outer rings make a dihdral angle of 81.49 (5)°.

Related literature

For the structure of N,N′-diphenyl­benzamidine, see: Alcock et al. (1988[Alcock, N. W., Barker, J. & Kilner, M. (1988). Acta Cryst. C44, 712-715.]) and for the structure of N,N′-diphenyl­benzamid­in­ium nitrate, see: Barker et al. (1999[Barker, J., Errington, W. & Wallbridge, M. G. H. (1999). Acta Cryst. C55, 1583-1585.]). For metal complexes of N,N′-diphenyl­benzamidine, see: Davies et al. (2001[Davies, R. P., Linton, D. J., Schooler, P., Snaith, R. & Wheatley, A. E. H. (2001). Eur. J. Inorg. Chem. pp. 619-622.]); Jiang et al. (2005[Jiang, X., Bollinger, J. C., Baik, M.-H. & Lee, D. (2005). Chem. Commun. pp. 1043-1045.]); Cotton et al. (1996[Cotton, F. A., Daniels, L. M., Maloney, D. J. & Murillo, C. A. (1996). Inorg. Chim. Acta, 249, 9-11.], 1997[Cotton, F. A., Daniels, L. M., Falvello, L. R., Matonic, J. H. & Murillo, C. A. (1997). Inorg. Chim. Acta, 256, 269-275.]).

[Scheme 1]

Experimental

Crystal data
  • 2C19H17N2+·C4H2O42−

  • Mr = 330.39

  • Monoclinic, P 21 /n

  • a = 10.5972 (3) Å

  • b = 8.8275 (3) Å

  • c = 18.7710 (7) Å

  • β = 102.346 (1)°

  • V = 1715.36 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.72 × 0.61 × 0.44 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.95, Tmax = 0.96

  • 41010 measured reflections

  • 5009 independent reflections

  • 4976 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.00

  • 4876 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N19—H4⋯O3 0.88 1.79 2.673 (1) 178
N12—H9⋯O4 0.90 1.74 2.634 (2) 172

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SMART; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

N,N'-Diphenylbenzamidine is widely used as a ligand in metal complexes and can act as a bridging (Jiang et al., 2005) or a bidentate (Davies et al., 2001) ligand. An important feature of many complexes with bridging bonding mode is metal-metal bond formation in dinuclear compounds (Cotton et al., 1997; Cotton et al., 1996). The crystal structure of N,N'-diphenylbenzamidine (Alcock et al., 1988) and its nitrate salt (Barker et al., 1999) have been reported previously. As part of an investigation of cocrystal synthesis, the N,N'-diphenylbenzamidine fumarate salt was obtained and the crystal and molecular structure was determined to identify the product. The asymmetric unit consist of one N,N'-diphenylbenzamidinium cation and half a fumarate dianion, which is located on a centre of inversion (Fig. 1). In the title compound there is a small difference in conformation of amidinium cation compared to N,N'-diphenylbenzamidine nitrate. In the amidinium cation the plane of the central phenyl ring is twisted by 53.7° and 78.4° with respect to the plane of the terminal phenyl rings 1 and 2 (Fig. 1). These values are slightly different from that in N,N'-diphenylbenzamidine nitrate in which a dihedral angle of 65.8° is observed (Barker et al., 1999). In the crystal structure of the title compound the amidinium cations are connected by the fumarate dianions via intermolecular N–H···O hydrogen bonds into trimers that are located on centres of inversion (Fig. 2 and Table 1).

Related literature top

For the structure of N,N'-diphenylbenzamidine, see: Alcock et al. (1988) and for the structure of N,N'-diphenylbenzamidinium nitrate, see: Barker et al. (1999). For metal complexes of N,N'-diphenylbenzamidine, see: Davies et al. (2001); Jiang et al. (2005); Cotton et al. (1996, 1997).

Experimental top

The title compound was prepared by dissolving N,N'-diphenylbenzamidine (0.054 g, 0.2 mmol) and fumaric acid (0.012 g, 0.1 mmol) in 5 ml of hot ethanol. Slow evaporation of the solution resulted in the formation of colorless prisms.

Refinement top

All H atoms were located in a difference map, but were positioned with idealized geometry and refined with soft restraints on the bond lengths and angles to regularise their geometry (C—H in the range of 0.93–0.98 and N—H in the range of 0.86—0.89 Å) and with Uiso(H) in the range 1.2-1.5 times Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SMART (Bruker, 2006); data reduction: SMART (Bruker, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labelling and displacement ellipsoids at the 50% probability level (symmetry code for equivalent atoms: i = -x+2, -y, -z+2). 1 and 2 distinguish the two independent terminal rings.
[Figure 2] Fig. 2. Crystal structure of the title compound with view of the trimers (hydrogen bonding is indicated by dashed lines).
Bis(N,N'-diphenylbenzamidinium) fumarate top
Crystal data top
2C19H17N2+·C4H2O42F(000) = 696.00
Mr = 330.39Dx = 1.279 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9851 reflections
a = 10.5972 (3) Åθ = 3–30°
b = 8.8275 (3) ŵ = 0.08 mm1
c = 18.7710 (7) ÅT = 120 K
β = 102.346 (1)°Prism fragment, colorless
V = 1715.36 (10) Å30.72 × 0.61 × 0.44 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5009 independent reflections
Radiation source: fine-focus sealed tube4876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(APEX2; Bruker, 2006)
h = 1414
Tmin = 0.95, Tmax = 0.96k = 012
41010 measured reflectionsl = 026
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(F2) + ( 0.06P)2 + 0.63P]
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.37 e Å3
4976 reflectionsΔρmin = 0.21 e Å3
226 parameters
Crystal data top
2C19H17N2+·C4H2O42V = 1715.36 (10) Å3
Mr = 330.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5972 (3) ŵ = 0.08 mm1
b = 8.8275 (3) ÅT = 120 K
c = 18.7710 (7) Å0.72 × 0.61 × 0.44 mm
β = 102.346 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5009 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2006)
4876 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.96Rint = 0.020
41010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.00Δρmax = 0.37 e Å3
4976 reflectionsΔρmin = 0.21 e Å3
226 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.94300 (8)0.03374 (10)0.99406 (5)0.0188
C20.86998 (8)0.07821 (10)0.91958 (5)0.0172
O30.91578 (6)0.04194 (8)0.86516 (3)0.0213
O40.76557 (6)0.14853 (8)0.91690 (4)0.0229
C50.63464 (8)0.08298 (9)0.73154 (4)0.0158
C60.53733 (8)0.06749 (10)0.66218 (4)0.0155
C70.53685 (9)0.06272 (10)0.62033 (5)0.0202
C80.43586 (9)0.08628 (12)0.56046 (5)0.0247
C90.33852 (9)0.02100 (12)0.54165 (5)0.0239
C100.34143 (8)0.15261 (11)0.58227 (5)0.0220
C110.44042 (8)0.17580 (10)0.64315 (5)0.0189
N120.59750 (7)0.09379 (9)0.79444 (4)0.0177
C130.47079 (8)0.07070 (10)0.80659 (4)0.0171
C140.43162 (9)0.16661 (11)0.85652 (5)0.0223
C150.30805 (10)0.15224 (13)0.87010 (5)0.0268
C160.22460 (9)0.04177 (14)0.83488 (5)0.0282
C170.26682 (10)0.05734 (13)0.78741 (6)0.0285
C180.39004 (9)0.04455 (11)0.77341 (5)0.0230
N190.76104 (7)0.08174 (9)0.73401 (4)0.0182
C200.82262 (8)0.11807 (10)0.67587 (4)0.0173
C210.77945 (8)0.23541 (10)0.62732 (5)0.0200
C220.84978 (9)0.27416 (11)0.57528 (5)0.0232
C230.96279 (10)0.19753 (12)0.57190 (5)0.0259
C241.00596 (10)0.08164 (13)0.62091 (6)0.0305
C250.93605 (9)0.04137 (12)0.67293 (6)0.0260
H110.90430.05481.03390.0224*
H910.26950.00560.49980.0277*
H1010.27690.22750.56920.0264*
H1110.44300.26490.67120.0230*
H1410.48870.24230.88040.0269*
H1510.28160.22170.90320.0324*
H1610.13850.03520.84340.0313*
H1710.21250.13720.76390.0336*
H2110.70420.28730.63020.0239*
H2210.82010.35360.54230.0286*
H2311.01080.22560.53540.0309*
H2411.08540.02870.62000.0370*
H2510.96530.03910.70750.0301*
H30.60300.13590.63240.0240*
H40.81180.06600.77730.0225*
H80.41780.11460.74270.0269*
H90.65810.11880.83410.0217*
H120.43430.17620.53250.0293*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0190 (4)0.0215 (4)0.0147 (3)0.0001 (3)0.0011 (3)0.0002 (3)
C20.0163 (4)0.0173 (4)0.0164 (4)0.0003 (3)0.0002 (3)0.0025 (3)
O30.0175 (3)0.0294 (3)0.0162 (3)0.0017 (2)0.0017 (2)0.0008 (2)
O40.0186 (3)0.0281 (3)0.0196 (3)0.0029 (2)0.0010 (2)0.0042 (2)
C50.0146 (3)0.0169 (4)0.0154 (3)0.0006 (3)0.0024 (3)0.0014 (3)
C60.0138 (3)0.0185 (4)0.0141 (3)0.0008 (3)0.0026 (3)0.0001 (3)
C70.0201 (4)0.0209 (4)0.0195 (4)0.0020 (3)0.0037 (3)0.0023 (3)
C80.0252 (4)0.0269 (5)0.0212 (4)0.0069 (3)0.0035 (3)0.0027 (4)
C90.0197 (4)0.0322 (5)0.0180 (4)0.0005 (3)0.0001 (3)0.0046 (3)
C100.0156 (4)0.0261 (4)0.0225 (4)0.0048 (3)0.0002 (3)0.0010 (3)
C110.0166 (4)0.0193 (4)0.0200 (4)0.0000 (3)0.0021 (3)0.0018 (3)
N120.0132 (3)0.0248 (4)0.0148 (3)0.0010 (3)0.0024 (2)0.0001 (3)
C130.0141 (3)0.0228 (4)0.0147 (3)0.0021 (3)0.0035 (3)0.0011 (3)
C140.0222 (4)0.0268 (4)0.0192 (4)0.0026 (3)0.0070 (3)0.0005 (3)
C150.0256 (5)0.0334 (5)0.0245 (4)0.0005 (4)0.0125 (4)0.0035 (4)
C160.0187 (4)0.0434 (6)0.0246 (4)0.0046 (4)0.0090 (3)0.0010 (4)
C170.0233 (4)0.0391 (6)0.0246 (4)0.0023 (4)0.0083 (4)0.0108 (4)
C180.0223 (4)0.0271 (4)0.0212 (4)0.0030 (3)0.0085 (3)0.0048 (3)
N190.0134 (3)0.0260 (4)0.0149 (3)0.0024 (3)0.0026 (2)0.0023 (3)
C200.0147 (3)0.0212 (4)0.0161 (4)0.0003 (3)0.0036 (3)0.0000 (3)
C210.0189 (4)0.0208 (4)0.0207 (4)0.0010 (3)0.0049 (3)0.0026 (3)
C220.0249 (4)0.0241 (4)0.0210 (4)0.0036 (3)0.0058 (3)0.0007 (3)
C230.0245 (4)0.0315 (5)0.0244 (4)0.0019 (4)0.0111 (3)0.0022 (4)
C240.0221 (4)0.0375 (6)0.0357 (5)0.0076 (4)0.0148 (4)0.0074 (4)
C250.0196 (4)0.0315 (5)0.0288 (5)0.0092 (4)0.0093 (3)0.0077 (4)
Geometric parameters (Å, º) top
C1—C1i1.3223 (17)C14—C151.3924 (13)
C1—C21.4982 (11)C14—H1410.947
C1—H110.944C15—C161.3857 (15)
C2—O31.2625 (11)C15—H1510.957
C2—O41.2603 (11)C16—C171.3892 (15)
C5—C61.4842 (11)C16—H1610.961
C5—N121.3255 (10)C17—C181.3906 (13)
C5—N191.3304 (10)C17—H1710.956
C6—C71.3917 (12)C18—H80.935
C6—C111.3926 (12)N19—C201.4228 (11)
C7—C81.3919 (13)N19—H40.884
C7—H30.944C20—C211.3908 (12)
C8—C91.3892 (14)C20—C251.3909 (12)
C8—H120.950C21—C221.3922 (12)
C9—C101.3864 (14)C21—H2110.931
C9—H910.962C22—C231.3886 (14)
C10—C111.3912 (12)C22—H2210.943
C10—H1010.945C23—C241.3864 (15)
C11—H1110.944C23—H2310.969
N12—C131.4239 (10)C24—C251.3922 (13)
N12—H90.901C24—H2410.966
C13—C141.3907 (12)C25—H2510.967
C13—C181.3882 (12)
C1i—C1—C2123.12 (10)C15—C14—H141120.5
C1i—C1—H11119.4C14—C15—C16120.40 (9)
C2—C1—H11117.5C14—C15—H151118.6
C1—C2—O3118.51 (8)C16—C15—H151121.0
C1—C2—O4116.12 (8)C15—C16—C17119.28 (9)
O3—C2—O4125.36 (8)C15—C16—H161119.7
C6—C5—N12120.33 (7)C17—C16—H161121.0
C6—C5—N19122.37 (7)C16—C17—C18120.95 (9)
N12—C5—N19117.26 (7)C16—C17—H171121.1
C5—C6—C7119.29 (7)C18—C17—H171118.0
C5—C6—C11119.85 (8)C17—C18—C13119.23 (9)
C7—C6—C11120.58 (8)C17—C18—H8119.7
C6—C7—C8119.25 (8)C13—C18—H8121.1
C6—C7—H3121.1C5—N19—C20126.50 (7)
C8—C7—H3119.7C5—N19—H4116.3
C7—C8—C9120.28 (9)C20—N19—H4116.8
C7—C8—H12119.4N19—C20—C21122.00 (8)
C9—C8—H12120.4N19—C20—C25117.56 (8)
C8—C9—C10120.23 (8)C21—C20—C25120.17 (8)
C8—C9—H91120.3C20—C21—C22119.49 (8)
C10—C9—H91119.4C20—C21—H211119.6
C9—C10—C11119.95 (8)C22—C21—H211120.9
C9—C10—H101120.9C21—C22—C23120.57 (9)
C11—C10—H101119.1C21—C22—H221119.3
C6—C11—C10119.66 (8)C23—C22—H221120.1
C6—C11—H111119.9C22—C23—C24119.65 (9)
C10—C11—H111120.5C22—C23—H231119.7
C5—N12—C13127.02 (7)C24—C23—H231120.6
C5—N12—H9117.3C23—C24—C25120.28 (9)
C13—N12—H9115.7C23—C24—H241120.7
N12—C13—C14116.64 (8)C25—C24—H241119.1
N12—C13—C18123.03 (8)C24—C25—C20119.83 (9)
C14—C13—C18120.29 (8)C24—C25—H251121.0
C13—C14—C15119.73 (9)C20—C25—H251119.2
C13—C14—H141119.8
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H4···O30.881.792.673 (1)178
N12—H9···O40.901.742.634 (2)172

Experimental details

Crystal data
Chemical formula2C19H17N2+·C4H2O42
Mr330.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)10.5972 (3), 8.8275 (3), 18.7710 (7)
β (°) 102.346 (1)
V3)1715.36 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.72 × 0.61 × 0.44
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2006)
Tmin, Tmax0.95, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
41010, 5009, 4876
Rint0.020
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.00
No. of reflections4976
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.21

Computer programs: APEX2 (Bruker, 2006), SMART (Bruker, 2006), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H4···O30.8841.7902.673 (1)177.8
N12—H9···O40.9011.7392.634 (2)172.2
 

Acknowledgements

We thank the US National Science Foundation for the partial support of this work through grant CHE-0521047 (to Brandeis University) for the purchase of a new X-ray diffractometer, and Professor Bruce M. Foxman for assistance with the data collection.

References

First citationAlcock, N. W., Barker, J. & Kilner, M. (1988). Acta Cryst. C44, 712–715.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBarker, J., Errington, W. & Wallbridge, M. G. H. (1999). Acta Cryst. C55, 1583–1585.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A., Daniels, L. M., Falvello, L. R., Matonic, J. H. & Murillo, C. A. (1997). Inorg. Chim. Acta, 256, 269–275.  CSD CrossRef CAS Web of Science Google Scholar
First citationCotton, F. A., Daniels, L. M., Maloney, D. J. & Murillo, C. A. (1996). Inorg. Chim. Acta, 249, 9–11.  CSD CrossRef CAS Web of Science Google Scholar
First citationDavies, R. P., Linton, D. J., Schooler, P., Snaith, R. & Wheatley, A. E. H. (2001). Eur. J. Inorg. Chem. pp. 619–622.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJiang, X., Bollinger, J. C., Baik, M.-H. & Lee, D. (2005). Chem. Commun. pp. 1043–1045.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds