organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Cyano­methyl-4-aza-1-azonia­bi­cyclo­[2.2.2]octane bromide dihydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cyik@163.com

(Received 25 May 2010; accepted 26 May 2010; online 5 June 2010)

In the crystal structure of the title compound, C8H14N3+·Br·2H2O, inter­molecular O—H⋯O and O—H⋯Br hydrogen bonding occurs. The water mol­ecules are connected into chains extending in the a-axis direction. The bromide anions are connected to the water mol­ecules, forming 10-membered rings. The cations are connected to the anions via weak C—H⋯Br inter­actions. Two carbon atoms of the cation are disordered and were refined using a split model (occupancy ratio 0.70:0.3).

Related literature

For uses of DABCO (1,4-biaza­bicyclo­[2.2.2]octa­ne) and its derivatives, see: Basaviah et al. (2003[Basaviah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811-891.]); Chen et al. (2010[Chen, L. Z., Huang, Y., Xiong, R. G. & Hu, H. W. (2010). J. Mol. Struct. 963, 16-21.]).

[Scheme 1]

Experimental

Crystal data
  • C8H14N3+·Br·2H2O

  • Mr = 268.16

  • Orthorhombic, P 21 21 21

  • a = 7.461 (5) Å

  • b = 12.008 (7) Å

  • c = 13.236 (8) Å

  • V = 1185.8 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.45 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.701, Tmax = 1.000

  • 13047 measured reflections

  • 2711 independent reflections

  • 2219 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.077

  • S = 1.01

  • 2711 reflections

  • 140 parameters

  • 101 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1134 Friedel pairs

  • Flack parameter: 0.033 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯Br1 0.82 2.58 3.354 (3) 159
O2—H1O2⋯O1 0.82 1.98 2.791 (4) 170
O1—H2O1⋯O2i 0.82 1.99 2.788 (5) 164
O2—H2O2⋯Br1i 0.82 2.50 3.314 (3) 172
C7—H7A⋯Br1 0.97 2.81 3.740 (5) 161
C7—H7B⋯Br1ii 0.97 2.92 3.792 (8) 151
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,4-Diazabicyclo[2.2.2]octane (DABCO) is used as a organocatalyst for a large number of reactions because of its nucleophilicity (Basaviah et al., 2003) and some of its derivatives are ferroelectrics (Chen et al., 2010). The structure determination of the title compound was performed within a project on the electric properties of 1,4-Diazabicyclo[2.2.2]octane derivatives. Within this project the crystals of the title compound were obtained by accident.

In the crystal stucture of the title compound two C atoms of the cation are disordered (Fig. 1). The cations and anions are connected by weak intermolecular C—H···Br interactions. The bromide anions are additionally linked to the water molecules via intermolecular O—H···Br hydrogen bonding and the water molecules are connected into chains that elongate in the direction of the a axis (Fig. 2). Each water molecule act as hydrogen bond donor and acceptor. The bromide anions and the water molecules forming ten-membered rings.

Related literature top

For uses of DABCO (1,4-biazabicyclo[2.2.2]octane) and its derivatives, see: Basaviah et al. (2003); Chen et al. (2010).

Experimental top

1,4-Diaza-bicyclo[2.2.2]octane (dabco) (0.05?mol, 5.6?g) and bromoacetonitrile (0.1?mol, 12.00?g) were dissolved in CH3CN(40?ml). The mixture was stirred for 1?h leading to a white precipitate of the title compound whish was filtered off, washed with acetonitrile and dried. Yield: 80%. Afterwards a mixture of 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane bromide (0.01?mol 2.32?g) and tetrafluoro-borate sodium (0.01?mol 1.10?g) in H2O (20?ml) was stirred until a clear solution was obtained. On slow evaporation of the solvent colourless plate crystals of the title compand suitable for X-ray analysis were obtained accidently.

The dielectric constant of the title compound as a function of temperature goes smoothly between 93 and 363?K and there is no dielectric anomaly observed within the measured temperature range.

Refinement top

The C—H H atoms were positioned with idealized geometry and refined using a riding model (Uiso(H) = 1.2 Ueq(C). The O—H H atoms were located in difference map, their bond lengths set to ideal values and finally they were refined using a riding model (Uiso(H) = 1.5 Ueq(O). Two carbon atoms are disordered and were refined using a split model and sof of 0.7 and 0.3. The C atoms with lower occupancy were refined only isotropic. The absolute structure was determined on the basis of 1134 Friedel-pairs.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Disordering is shown with full and open bonds.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the a axis. Disordered C and H atoms are omitted and intermolecular hydrogen bonding is shown as dashed lines.
1-Cyanomethyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide dihydrate top
Crystal data top
C8H14N3+·Br·2H2OF(000) = 552
Mr = 268.16Dx = 1.502 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3350 reflections
a = 7.461 (5) Åθ = 6.3–55.2°
b = 12.008 (7) ŵ = 3.45 mm1
c = 13.236 (8) ÅT = 293 K
V = 1185.8 (13) Å3Prism, colourless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2711 independent reflections
Radiation source: fine-focus sealed tube2219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 13.6620 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.701, Tmax = 1.000l = 1717
13047 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0275P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.29 e Å3
2711 reflectionsΔρmin = 0.29 e Å3
140 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
101 restraintsExtinction coefficient: 0.0055 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1134 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.033 (14)
Crystal data top
C8H14N3+·Br·2H2OV = 1185.8 (13) Å3
Mr = 268.16Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.461 (5) ŵ = 3.45 mm1
b = 12.008 (7) ÅT = 293 K
c = 13.236 (8) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2711 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2219 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 1.000Rint = 0.073
13047 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.29 e Å3
S = 1.01Δρmin = 0.29 e Å3
2711 reflectionsAbsolute structure: Flack (1983), 1134 Friedel pairs
140 parametersAbsolute structure parameter: 0.033 (14)
101 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.3080 (4)0.2169 (2)0.79551 (19)0.0332 (7)
C10.3169 (6)0.2800 (3)0.8942 (3)0.0470 (10)
H1A0.37250.23430.94580.056*
H1B0.19720.29970.91650.056*
C20.4287 (6)0.3857 (3)0.8761 (3)0.0623 (11)
H2A0.36170.44990.89950.075*
H2B0.53810.38120.91540.075*
C30.2110 (6)0.2873 (3)0.7178 (3)0.0640 (13)
H3A0.08390.28990.73300.077*0.70
H3B0.22620.25560.65090.077*0.70
H3C0.10460.32080.74700.077*0.30
H3D0.17550.24220.66040.077*0.30
C40.2926 (10)0.4068 (6)0.7216 (5)0.053 (2)0.70
H4A0.30340.43640.65360.063*0.70
H4B0.21480.45570.76000.063*0.70
C4'0.349 (2)0.3801 (15)0.6842 (12)0.078 (8)0.30
H4C0.41510.35550.62530.093*0.30
H4D0.28520.44800.66690.093*0.30
C50.4948 (6)0.1953 (3)0.7609 (4)0.0645 (12)
H5A0.49480.14340.70480.077*0.70
H5B0.56540.16380.81540.077*0.70
H5C0.49240.16610.69260.077*0.30
H5D0.54970.13980.80420.077*0.30
C60.5746 (11)0.3096 (5)0.7274 (8)0.0645 (12)0.70
H6A0.69870.31440.74890.077*0.70
H6B0.57180.31480.65430.077*0.70
C6'0.6115 (17)0.3066 (10)0.7634 (12)0.078 (8)0.30
H6C0.69080.30710.82150.094*0.30
H6D0.68300.31350.70250.094*0.30
N20.4744 (4)0.4012 (3)0.7705 (3)0.0493 (8)
C70.2164 (5)0.1068 (3)0.8091 (3)0.0435 (9)
H7A0.21390.06760.74500.052*
H7B0.28360.06190.85680.052*
C80.0335 (6)0.1213 (3)0.8459 (3)0.0488 (10)
N30.1082 (6)0.1335 (3)0.8753 (3)0.0724 (11)
Br10.08721 (5)0.01932 (3)0.56114 (3)0.05169 (15)
O10.4108 (4)0.1366 (2)0.4565 (2)0.0779 (9)
H1O10.35190.09800.49530.117*
H2O10.49700.14180.49460.117*
O20.2440 (4)0.3445 (2)0.4497 (2)0.0736 (9)
H1O20.28870.28230.44480.110*
H2O20.32070.39320.44580.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0371 (15)0.0258 (15)0.0368 (16)0.0016 (13)0.0012 (12)0.0057 (12)
C10.061 (3)0.042 (2)0.038 (2)0.0100 (19)0.0000 (18)0.0081 (16)
C20.063 (3)0.049 (2)0.074 (3)0.022 (3)0.012 (3)0.017 (2)
C30.079 (3)0.056 (3)0.057 (2)0.013 (3)0.027 (2)0.021 (2)
C40.070 (4)0.044 (4)0.044 (4)0.010 (3)0.003 (3)0.012 (3)
C4'0.12 (2)0.036 (10)0.081 (15)0.034 (12)0.028 (13)0.018 (10)
C50.051 (2)0.041 (2)0.101 (3)0.0023 (19)0.032 (2)0.009 (2)
C60.051 (2)0.041 (2)0.101 (3)0.0023 (19)0.032 (2)0.009 (2)
C6'0.076 (13)0.085 (13)0.072 (13)0.067 (12)0.050 (10)0.046 (10)
N20.0519 (19)0.0353 (17)0.061 (2)0.0021 (15)0.0030 (16)0.0087 (16)
C70.051 (2)0.0298 (19)0.049 (2)0.0041 (18)0.0025 (19)0.0010 (16)
C80.052 (3)0.042 (2)0.052 (2)0.0124 (19)0.0037 (19)0.0013 (18)
N30.058 (3)0.072 (3)0.087 (3)0.014 (2)0.004 (2)0.012 (2)
Br10.0441 (2)0.0516 (2)0.0595 (2)0.00308 (19)0.00010 (19)0.00776 (18)
O10.0656 (19)0.0689 (19)0.099 (2)0.0058 (19)0.008 (2)0.0238 (17)
O20.0561 (18)0.0486 (17)0.116 (3)0.0053 (15)0.009 (2)0.0014 (18)
Geometric parameters (Å, º) top
N1—C51.490 (5)C4'—H4D0.9700
N1—C71.499 (4)C5—C61.560 (8)
N1—C11.511 (4)C5—C6'1.595 (12)
N1—C31.515 (5)C5—H5A0.9700
C1—C21.538 (5)C5—H5B0.9700
C1—H1A0.9700C5—H5C0.9700
C1—H1B0.9700C5—H5D0.9700
C2—N21.451 (5)C6—N21.448 (7)
C2—H2A0.9700C6—H6A0.9700
C2—H2B0.9700C6—H6B0.9700
C3—C41.560 (8)C6'—N21.532 (13)
C3—C4'1.579 (14)C6'—H6C0.9700
C3—H3A0.9700C6'—H6D0.9700
C3—H3B0.9700C7—C81.459 (6)
C3—H3C0.9700C7—H7A0.9700
C3—H3D0.9700C7—H7B0.9700
C4—N21.504 (8)C8—N31.136 (5)
C4—H4A0.9700O1—H1O10.8201
C4—H4B0.9700O1—H2O10.8200
C4'—N21.500 (14)O2—H1O20.8201
C4'—H4C0.9700O2—H2O20.8200
C5—N1—C7108.0 (3)N1—C5—C6'111.0 (5)
C5—N1—C1108.2 (3)C6—C5—C6'20.1 (9)
C7—N1—C1111.0 (3)N1—C5—H5A110.3
C5—N1—C3109.6 (3)C6—C5—H5A110.3
C7—N1—C3110.8 (3)C6'—C5—H5A123.7
C1—N1—C3109.2 (3)N1—C5—H5B110.3
N1—C1—C2107.6 (3)C6—C5—H5B110.3
N1—C1—H1A110.2C6'—C5—H5B90.9
C2—C1—H1A110.2H5A—C5—H5B108.6
N1—C1—H1B110.2N1—C5—H5C109.4
C2—C1—H1B110.2C6—C5—H5C93.5
H1A—C1—H1B108.5C6'—C5—H5C109.4
N2—C2—C1112.6 (3)H5A—C5—H5C18.8
N2—C2—H2A109.1H5B—C5—H5C124.1
C1—C2—H2A109.1N1—C5—H5D109.4
N2—C2—H2B109.1C6—C5—H5D127.7
C1—C2—H2B109.1C6'—C5—H5D109.4
H2A—C2—H2B107.8H5A—C5—H5D90.6
N1—C3—C4107.7 (4)H5B—C5—H5D20.4
N1—C3—C4'105.9 (7)H5C—C5—H5D108.0
C4—C3—C4'26.6 (8)N2—C6—C5111.1 (5)
N1—C3—H3A110.2N2—C6—H6A109.4
C4—C3—H3A110.2C5—C6—H6A109.4
C4'—C3—H3A132.1N2—C6—H6B109.4
N1—C3—H3B110.2C5—C6—H6B109.4
C4—C3—H3B110.2H6A—C6—H6B108.0
C4'—C3—H3B86.8N2—C6'—C5104.9 (8)
H3A—C3—H3B108.5N2—C6'—H6C110.8
N1—C3—H3C110.6C5—C6'—H6C110.8
C4—C3—H3C85.7N2—C6'—H6D110.8
C4'—C3—H3C110.6C5—C6'—H6D110.8
H3A—C3—H3C26.3H6C—C6'—H6D108.8
H3B—C3—H3C128.5C6—N2—C2113.8 (5)
N1—C3—H3D110.6C6—N2—C4'84.0 (10)
C4—C3—H3D130.2C2—N2—C4'124.4 (7)
C4'—C3—H3D110.6C6—N2—C4109.2 (5)
H3A—C3—H3D85.1C2—N2—C4102.0 (4)
H3B—C3—H3D25.6C4'—N2—C427.8 (9)
H3C—C3—H3D108.7C6—N2—C6'21.1 (8)
N2—C4—C3109.0 (5)C2—N2—C6'96.9 (6)
N2—C4—H4A109.9C4'—N2—C6'104.3 (10)
C3—C4—H4A109.9C4—N2—C6'127.5 (6)
N2—C4—H4B109.9C8—C7—N1111.2 (3)
C3—C4—H4B109.9C8—C7—H7A109.4
H4A—C4—H4B108.3N1—C7—H7A109.4
N2—C4'—C3108.2 (9)C8—C7—H7B109.4
N2—C4'—H4C110.1N1—C7—H7B109.4
C3—C4'—H4C110.1H7A—C7—H7B108.0
N2—C4'—H4D110.1N3—C8—C7179.2 (5)
C3—C4'—H4D110.1H1O1—O1—H2O194.5
H4C—C4'—H4D108.4H1O2—O2—H2O2111.1
N1—C5—C6106.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···Br10.822.583.354 (3)159
O2—H1O2···O10.821.982.791 (4)170
O1—H2O1···O2i0.821.992.788 (5)164
O2—H2O2···Br1i0.822.503.314 (3)172
C7—H7A···Br10.972.813.740 (5)161
C7—H7B···Br1ii0.972.923.792 (8)151
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H14N3+·Br·2H2O
Mr268.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.461 (5), 12.008 (7), 13.236 (8)
V3)1185.8 (13)
Z4
Radiation typeMo Kα
µ (mm1)3.45
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.701, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13047, 2711, 2219
Rint0.073
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.077, 1.01
No. of reflections2711
No. of parameters140
No. of restraints101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.29
Absolute structureFlack (1983), 1134 Friedel pairs
Absolute structure parameter0.033 (14)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···Br10.822.583.354 (3)158.7
O2—H1O2···O10.821.982.791 (4)170.4
O1—H2O1···O2i0.821.992.788 (5)163.8
O2—H2O2···Br1i0.822.503.314 (3)171.5
C7—H7A···Br10.972.813.740 (5)161
C7—H7B···Br1ii0.972.923.792 (8)151
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y, z+1/2.
 

References

First citationBasaviah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811–891.  Web of Science PubMed Google Scholar
First citationChen, L. Z., Huang, Y., Xiong, R. G. & Hu, H. W. (2010). J. Mol. Struct. 963, 16–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds