organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

p-Tolyl bis­­(o-tolyl­amido)­phosphinate

aDepartment of Chemistry, Islamic Azad University-Zanjan Branch, PO Box 49195-467, Zanjan, Iran, bDepartamento de Química, Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México, D.F., México, and cDepartment of Chemistry, Ferdowsi University of Mashhad, 91779, Mashhad, Iran
*Correspondence e-mail: fahimeh_sabbaghi@yahoo.com

(Received 21 May 2010; accepted 17 June 2010; online 23 June 2010)

In the title compound, C21H23N2O2P, the P atom has a distorted tetra­hedral configuration. The O atom of the OC6H4-4-CH3 group and the N atoms show sp2 character. In the crystal, adjacent mol­ecules are linked by N—H⋯O hydrogen bonds into helical chains parallel to the b axis.

Related literature

For a related structure, see: Pourayoubi et al. (2009[Pourayoubi, M., Ghadimi, S., Ebrahimi Valmoozi, A. A. & Banan, A. R. (2009). Acta Cryst. E65, o1973.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23N2O2P

  • Mr = 366.38

  • Monoclinic, P 21 /c

  • a = 12.157 (3) Å

  • b = 8.978 (2) Å

  • c = 18.080 (5) Å

  • β = 101.569 (1)°

  • V = 1933.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.6 × 0.54 × 0.47 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.860, Tmax = 0.968

  • 23372 measured reflections

  • 4402 independent reflections

  • 3097 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.06

  • 4402 reflections

  • 257 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.91 (2) 2.02 (2) 2.8963 (19) 161 (2)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the previous work, the structure determination of p-tolyl bis(p-tolylamido)phosphate (Pourayoubi et al., 2009) has been investigated; we report here on the crystal structure of title compound (Fig. 1). The title compound was synthesized from the reaction of (4-tolyl)-dichlorophosphate with an excess amount of ortho-toluidine (1:4 mole ratio). Single crystals were obtained from CHCl3/n-C6H14 at room temperature. Molecular structure of [4-H3C—C6H4O]P(O)[NHC6H4-2-CH3]2 is shown in Fig. 1. The phosphorus atom has a distorted tetrahedral configuration. The bond angles around P atom are in the range of 96.87 (7)° to 118.95 (8)°. The oxygen atom of OC6H4-4-CH3 moiety and the nitrogen atoms show sp2 character (the C15—O2—P1 angle is 124.67 (11)°, the C1—N1—P1 and C8—N2—P1 are 123.77 (12)° and 127.71 (12)°, respectively. In the crystal structure, molecules are linked via N—H···O hydrogen bonds (N1···O1 = 2.8963 (19) Å) into an extended chain (Fig. 2) parallel to the b axis.

Related literature top

For a related structure, see: Pourayoubi et al. (2009).

Experimental top

To a solution of (4-tolyl)-dichlorophosphate (2.250 g, 10 mmol) in 15 ml dry acetonitrile, a solution of ortho-toluidine (4.286 g, 40 mmol) in 30 ml acetonitrile was added at 0°C. After 4 h stirring, the solvent was evaporated in vacuum. The solid was washed with distilled water. Single crystals of the product were obtained from a solution of CHCl3/n-C6H14 at room temperature.

Refinement top

H atoms of both nitrogen were found by Fourier differences, it was necessary to restrain distances setting the NH as 1.01 Å instead of 0.86 Å as the ideal would be, but under this proposal to refine, both distances are obtained, 0.9119 (152) Å for N1—H1 and 0.8982 (153) Å for N2—H21,respectively, which are more realistic. The difference can be due to the effect of hydrogen bond generates by N1—H1—O1. All other hydrogen atoms were placed geometrically.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A general view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of N—H···O hydrogen bond.
p-Tolyl bis(o-tolylamido)phosphinate top
Crystal data top
C21H23N2O2PF(000) = 776
Mr = 366.38Dx = 1.259 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 600 reflections
a = 12.157 (3) Åθ = 1–14°
b = 8.978 (2) ŵ = 0.16 mm1
c = 18.080 (5) ÅT = 293 K
β = 101.569 (1)°Priem, colourless
V = 1933.3 (8) Å30.6 × 0.54 × 0.47 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4402 independent reflections
Radiation source: Enraf Nonius FR5903097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.6°
CCD rotation images, thick slices scansh = 1515
Absorption correction: multi-scan
(Blessing, 1995)
k = 1011
Tmin = 0.860, Tmax = 0.968l = 1923
23372 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.2653P]
where P = (Fo2 + 2Fc2)/3
4402 reflections(Δ/σ)max = 0.015
257 parametersΔρmax = 0.18 e Å3
2 restraintsΔρmin = 0.36 e Å3
Crystal data top
C21H23N2O2PV = 1933.3 (8) Å3
Mr = 366.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.157 (3) ŵ = 0.16 mm1
b = 8.978 (2) ÅT = 293 K
c = 18.080 (5) Å0.6 × 0.54 × 0.47 mm
β = 101.569 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4402 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3097 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.968Rint = 0.048
23372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.18 e Å3
4402 reflectionsΔρmin = 0.36 e Å3
257 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28763 (13)0.18689 (18)0.26516 (10)0.0359 (4)
C20.25191 (16)0.3029 (2)0.21582 (11)0.0464 (4)
H20.30360.35350.19360.056*
C30.14023 (18)0.3444 (3)0.19930 (13)0.0606 (6)
H30.11710.42320.16650.073*
C40.06346 (18)0.2691 (3)0.23138 (15)0.0693 (7)
H40.01210.29510.21970.083*
C50.09918 (17)0.1546 (3)0.28107 (14)0.0620 (6)
H50.04660.10440.30270.074*
C60.21099 (15)0.1116 (2)0.29999 (11)0.0446 (4)
C70.24895 (19)0.0078 (2)0.35748 (13)0.0628 (6)
H7A0.18470.05210.37220.094*
H7B0.29690.03510.4010.094*
H7C0.28960.08270.33610.094*
C80.43487 (15)0.36933 (19)0.41804 (9)0.0395 (4)
C90.47389 (18)0.2563 (2)0.46833 (11)0.0518 (5)
H90.52890.19150.45850.062*
C100.4311 (2)0.2392 (3)0.53349 (12)0.0656 (6)
H100.45590.16150.56660.079*
C110.3524 (2)0.3374 (3)0.54873 (13)0.0687 (7)
H110.32520.32830.59310.082*
C120.31363 (18)0.4494 (3)0.49840 (12)0.0614 (6)
H120.26030.51550.50950.074*
C130.35181 (15)0.4668 (2)0.43141 (10)0.0464 (5)
C140.3050 (2)0.5866 (3)0.37677 (16)0.0643 (6)
C150.71094 (14)0.1945 (2)0.36813 (10)0.0399 (4)
C160.76182 (16)0.1141 (2)0.43050 (12)0.0530 (5)
H160.72340.03780.44920.064*
C170.87118 (17)0.1486 (3)0.46506 (13)0.0607 (6)
H170.90560.09440.50720.073*
C180.93031 (17)0.2605 (3)0.43883 (13)0.0575 (5)
C190.87634 (17)0.3392 (3)0.37669 (13)0.0633 (6)
H190.91430.41630.35830.076*
C200.76747 (16)0.3071 (2)0.34082 (12)0.0539 (5)
H200.73310.36130.29870.065*
C211.0505 (2)0.2947 (4)0.47617 (17)0.0897 (9)
H21A1.05340.32420.52760.135*
H21B1.07840.37410.44950.135*
H21C1.09590.20750.47510.135*
N10.40296 (12)0.14475 (16)0.28185 (9)0.0387 (3)
N20.48102 (13)0.38993 (16)0.35183 (8)0.0393 (3)
O10.53434 (10)0.33484 (13)0.22624 (7)0.0420 (3)
O20.60148 (10)0.15191 (13)0.33463 (7)0.0444 (3)
P10.50634 (4)0.26305 (4)0.29312 (2)0.03385 (15)
H10.4230 (17)0.0477 (18)0.2912 (12)0.062 (6)*
H210.4928 (17)0.4862 (18)0.3421 (12)0.061 (6)*
H14C0.267 (3)0.548 (3)0.3309 (19)0.104 (10)*
H14B0.249 (3)0.645 (4)0.3955 (18)0.123 (11)*
H14A0.363 (3)0.660 (3)0.3641 (17)0.105 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0343 (9)0.0320 (9)0.0410 (9)0.0007 (7)0.0063 (7)0.0066 (7)
C20.0451 (11)0.0446 (10)0.0496 (11)0.0036 (8)0.0099 (9)0.0016 (8)
C30.0508 (12)0.0606 (13)0.0673 (13)0.0155 (10)0.0046 (10)0.0094 (11)
C40.0381 (11)0.0708 (15)0.0969 (19)0.0124 (10)0.0085 (12)0.0035 (13)
C50.0429 (12)0.0608 (13)0.0875 (16)0.0049 (10)0.0255 (11)0.0025 (12)
C60.0434 (10)0.0400 (10)0.0524 (11)0.0032 (8)0.0142 (8)0.0028 (8)
C70.0634 (13)0.0583 (13)0.0724 (14)0.0046 (11)0.0272 (11)0.0159 (11)
C80.0440 (10)0.0391 (9)0.0351 (9)0.0131 (7)0.0074 (7)0.0069 (7)
C90.0580 (12)0.0516 (12)0.0446 (11)0.0084 (9)0.0072 (9)0.0031 (9)
C100.0774 (16)0.0723 (15)0.0447 (12)0.0274 (13)0.0066 (11)0.0083 (10)
C110.0781 (16)0.0866 (17)0.0469 (12)0.0379 (14)0.0255 (11)0.0122 (12)
C120.0569 (12)0.0702 (15)0.0627 (13)0.0206 (11)0.0254 (10)0.0215 (12)
C130.0456 (10)0.0465 (11)0.0488 (10)0.0140 (8)0.0137 (8)0.0136 (8)
C140.0639 (15)0.0566 (14)0.0739 (16)0.0124 (12)0.0176 (13)0.0040 (12)
C150.0335 (9)0.0392 (10)0.0470 (10)0.0002 (7)0.0080 (8)0.0031 (8)
C160.0428 (11)0.0542 (12)0.0610 (12)0.0002 (9)0.0085 (9)0.0113 (10)
C170.0464 (12)0.0712 (14)0.0597 (13)0.0073 (10)0.0009 (10)0.0060 (11)
C180.0394 (11)0.0678 (14)0.0626 (13)0.0017 (9)0.0039 (10)0.0080 (11)
C190.0461 (12)0.0682 (14)0.0757 (15)0.0163 (10)0.0125 (11)0.0062 (12)
C200.0420 (11)0.0583 (12)0.0592 (12)0.0062 (9)0.0052 (9)0.0133 (10)
C210.0464 (14)0.108 (2)0.105 (2)0.0113 (14)0.0079 (14)0.0065 (18)
N10.0352 (8)0.0277 (7)0.0527 (9)0.0005 (6)0.0075 (6)0.0013 (6)
N20.0519 (9)0.0282 (8)0.0399 (8)0.0047 (6)0.0144 (7)0.0016 (6)
O10.0477 (7)0.0385 (7)0.0428 (7)0.0021 (5)0.0159 (5)0.0007 (5)
O20.0335 (6)0.0342 (6)0.0627 (8)0.0016 (5)0.0025 (6)0.0045 (6)
P10.0341 (2)0.0287 (2)0.0391 (3)0.00105 (17)0.00834 (18)0.00115 (17)
Geometric parameters (Å, º) top
C1—C21.383 (3)C13—C141.494 (3)
C1—C61.399 (2)C14—H14C0.93 (3)
C1—N11.425 (2)C14—H14B0.97 (3)
C2—C31.381 (3)C14—H14A1.02 (3)
C2—H20.93C15—C201.369 (3)
C3—C41.372 (3)C15—C161.377 (3)
C3—H30.93C15—O21.400 (2)
C4—C51.377 (3)C16—C171.386 (3)
C4—H40.93C16—H160.93
C5—C61.388 (3)C17—C181.374 (3)
C5—H50.93C17—H170.93
C6—C71.500 (3)C18—C191.377 (3)
C7—H7A0.96C18—C211.513 (3)
C7—H7B0.96C19—C201.382 (3)
C7—H7C0.96C19—H190.93
C8—C91.382 (3)C20—H200.93
C8—C131.393 (3)C21—H21A0.96
C8—N21.432 (2)C21—H21B0.96
C9—C101.388 (3)C21—H21C0.96
C9—H90.93N1—P11.6268 (15)
C10—C111.369 (4)N1—H10.911 (15)
C10—H100.93N2—P11.6279 (15)
C11—C121.375 (3)N2—H210.899 (15)
C11—H110.93O1—P11.4692 (12)
C12—C131.390 (3)O2—P11.5964 (13)
C12—H120.93
C2—C1—C6120.19 (16)C13—C14—H14B111.0 (19)
C2—C1—N1120.32 (15)H14C—C14—H14B105 (3)
C6—C1—N1119.48 (16)C13—C14—H14A114.9 (17)
C3—C2—C1120.67 (18)H14C—C14—H14A106 (2)
C3—C2—H2119.7H14B—C14—H14A107 (2)
C1—C2—H2119.7C20—C15—C16120.46 (17)
C4—C3—C2119.9 (2)C20—C15—O2123.22 (17)
C4—C3—H3120.1C16—C15—O2116.30 (16)
C2—C3—H3120.1C15—C16—C17119.01 (19)
C3—C4—C5119.4 (2)C15—C16—H16120.5
C3—C4—H4120.3C17—C16—H16120.5
C5—C4—H4120.3C18—C17—C16121.9 (2)
C4—C5—C6122.25 (19)C18—C17—H17119
C4—C5—H5118.9C16—C17—H17119
C6—C5—H5118.9C17—C18—C19117.39 (19)
C5—C6—C1117.52 (18)C17—C18—C21121.3 (2)
C5—C6—C7121.31 (18)C19—C18—C21121.3 (2)
C1—C6—C7121.15 (17)C18—C19—C20122.0 (2)
C6—C7—H7A109.5C18—C19—H19119
C6—C7—H7B109.5C20—C19—H19119
H7A—C7—H7B109.5C15—C20—C19119.2 (2)
C6—C7—H7C109.5C15—C20—H20120.4
H7A—C7—H7C109.5C19—C20—H20120.4
H7B—C7—H7C109.5C18—C21—H21A109.5
C9—C8—C13120.81 (18)C18—C21—H21B109.5
C9—C8—N2120.30 (17)H21A—C21—H21B109.5
C13—C8—N2118.87 (16)C18—C21—H21C109.5
C8—C9—C10120.1 (2)H21A—C21—H21C109.5
C8—C9—H9119.9H21B—C21—H21C109.5
C10—C9—H9119.9C1—N1—P1123.77 (12)
C11—C10—C9119.7 (2)C1—N1—H1120.6 (13)
C11—C10—H10120.1P1—N1—H1115.4 (13)
C9—C10—H10120.1C8—N2—P1127.71 (12)
C10—C11—C12119.9 (2)C8—N2—H21113.0 (14)
C10—C11—H11120.1P1—N2—H21119.2 (14)
C12—C11—H11120.1C15—O2—P1124.67 (11)
C11—C12—C13121.9 (2)O1—P1—O2113.30 (7)
C11—C12—H12119O1—P1—N1118.95 (8)
C13—C12—H12119O2—P1—N196.87 (7)
C12—C13—C8117.46 (19)O1—P1—N2109.57 (7)
C12—C13—C14120.5 (2)O2—P1—N2110.16 (8)
C8—C13—C14122.06 (18)N1—P1—N2107.23 (7)
C13—C14—H14C112.0 (18)
C6—C1—C2—C31.1 (3)C15—C16—C17—C180.1 (3)
N1—C1—C2—C3179.94 (17)C16—C17—C18—C190.6 (3)
C1—C2—C3—C40.7 (3)C16—C17—C18—C21178.7 (2)
C2—C3—C4—C51.3 (4)C17—C18—C19—C200.8 (3)
C3—C4—C5—C60.2 (4)C21—C18—C19—C20178.5 (2)
C4—C5—C6—C11.5 (3)C16—C15—C20—C190.0 (3)
C4—C5—C6—C7176.6 (2)O2—C15—C20—C19178.57 (19)
C2—C1—C6—C52.1 (3)C18—C19—C20—C150.5 (3)
N1—C1—C6—C5178.90 (17)C2—C1—N1—P139.1 (2)
C2—C1—C6—C7175.95 (18)C6—C1—N1—P1139.85 (15)
N1—C1—C6—C73.0 (3)C9—C8—N2—P145.5 (2)
C13—C8—C9—C100.6 (3)C13—C8—N2—P1135.66 (15)
N2—C8—C9—C10178.22 (17)C20—C15—O2—P133.5 (2)
C8—C9—C10—C111.8 (3)C16—C15—O2—P1147.94 (14)
C9—C10—C11—C122.0 (3)C15—O2—P1—O162.76 (15)
C10—C11—C12—C130.2 (3)C15—O2—P1—N1171.60 (13)
C11—C12—C13—C82.4 (3)C15—O2—P1—N260.38 (15)
C11—C12—C13—C14177.9 (2)C1—N1—P1—O175.73 (15)
C9—C8—C13—C122.6 (3)C1—N1—P1—O2162.81 (14)
N2—C8—C13—C12176.18 (16)C1—N1—P1—N249.18 (16)
C9—C8—C13—C14177.7 (2)C8—N2—P1—O1169.91 (14)
N2—C8—C13—C143.5 (3)C8—N2—P1—O264.80 (17)
C20—C15—C16—C170.2 (3)C8—N2—P1—N139.51 (17)
O2—C15—C16—C17178.44 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (2)2.02 (2)2.8963 (19)161 (2)
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H23N2O2P
Mr366.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.157 (3), 8.978 (2), 18.080 (5)
β (°) 101.569 (1)
V3)1933.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.6 × 0.54 × 0.47
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.860, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
23372, 4402, 3097
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.06
No. of reflections4402
No. of parameters257
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.36

Computer programs: COLLECT (Nonius, 2001), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.911 (15)2.021 (17)2.8963 (19)160.5 (19)
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

Support of this investigation by Islamic Azad University-Zanjan Branch is gratefully acknowledged.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPourayoubi, M., Ghadimi, S., Ebrahimi Valmoozi, A. A. & Banan, A. R. (2009). Acta Cryst. E65, o1973.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds