supplementary materials


ng2783 scheme

Acta Cryst. (2010). E66, m790    [ doi:10.1107/S1600536810021434 ]

(5,15-Dianthracen-9-yl-10,20-dihexylporphyrinato)nickel(II): a planar nickel(II) porphyrin

M. O. Senge and M. Davis

Abstract top

The title compound, [Ni(C60H52N4)], is an example of a meso tetrasubstituted nickel(II) porphyrin with both meso aryl and alkyl residues. The molecule exhibits a planar macrocycle with an average deviation of the 24 macrocycle atoms from their least-squares plane ([Delta]24) of 0.01 Å and an average Ni-N bond length of 1.960 (2) Å. The NiII atom lies on a center of inversion. The structure presents a rare example for a planar nickel(II) porphyrin, as meso-substituted nickel(II) porphyrins with either only meso-aryl or with meso-alkyl residues typically exhibit a ruffled conformation.

Comment top

In continuation of studies on the conformational flexibility of porphyrins (Senge, 2006) the structure of the title compound was determined as an example for a meso substituted porphyrin with both meso alkyl and meso aryl subsitutents (Senge et al., 2010) and in relation to current synthetic studies on anthracenyl porphyrins (Volz & Schäffer, 1985; Davis et al., 2008; Sooambar et al., 2009).

The structure of (I), is shown in Fig. 1. The molecule exhibits a completely planar macrocycle with an average deviation of the 24 macrocycle atoms from their least-squares-plane (Δ24) of 0.01 Å and an average Ni—N bond length of 1.960 (2) Å. All geometrical parameters are typical for a planar nickel(II) porphyrin (Senge et al., 2000). No individual macrocycle atom was displaced more then 0.015 Å from the mean plane. Likewise, differences in bond angles and lenghts between the meso aryl and meso alkyl quadrants are minimal. The anthracenyl residues are almost orthogonal to the plane of the four nitrogen atoms (96.2°) similarly to the situation found in related zinc(II) systems with meso aryl residues (Sooambar et al., 2009). In the crystal packing there are no close contacts (not shown). The anthracene residues prevent π-stacking of the porphyrins and the hexyl side chains are oriented between neighboring anthracenyl substituents and hinder π-stacking as well.

The structure presents a rare example for a planar nickel(II) porphyrin. Typically, meso substituted nickel(II) porphyrins with only meso aryl residues (Fleischer et al., 1964; Hoard, 1973; Lee & Scheidt, 1987) and those with meso alkyl residues (Senge et al., 1999; Runge et al., 1999) exhibit a ruffled conformation. Only (5,10,15,20-tetramethylporphyrinato)nickel(II) exbihits an almost planar conformation as well (Gallucci et al., 1982).

Related literature top

For the conformation of porphyrins, see: Senge (2006). For porphyrins with mixed meso substituents, see: Senge et al. (2010). For Ni(II) porphyrin structures, see: Fleischer et al. (1964);; Gallucci et al. (1982); Hoard (1973); Lee & Scheidt (1987); Senge et al. (1999, 2000) and Runge et al. (1999). For anthracenyl porphyrins see: Volz & Schäffer (1985); Davis et al. (2008); Sooambar et al. (2009). For the handling of the crystals, see: Hope (1994).

Experimental top

The compound was prepared via metallation of the respective free base porphyrin and crystallized via liquid diffusion of methanol into a solution of the porphyrin in methylene chloride. Crystals were handled as described by Hope (1994).

Refinement top

Hydrogen atoms were located in difference maps and refined using a standard riding model.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : View of the molecular structure of I in the crystals. Thermal ellipsoids are drawn for 50% occupancy.
(5,15-Dianthracen-9-yl-10,20-dihexylporphyrinato)nickel(II) top
Crystal data top
[Ni(C60H52N4)]Z = 1
Mr = 887.77F(000) = 468
Triclinic, P1Dx = 1.329 Mg m3
Hall symbol: -P 1Melting point: n/d K
a = 7.797 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.387 (3) ÅCell parameters from 3864 reflections
c = 15.285 (5) Åθ = 2.4–31.2°
α = 97.246 (6)°µ = 0.48 mm1
β = 91.222 (4)°T = 118 K
γ = 91.402 (6)°Prism, red
V = 1109.1 (7) Å30.50 × 0.20 × 0.05 mm
Data collection top
Rigaku Saturn724
diffractometer
3233 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.070
Graphite Monochromatorθmax = 25.0°, θmin = 3.0°
Detector resolution: 28.5714 pixels mm-1h = 99
dtprofit.ref scansk = 1111
17330 measured reflectionsl = 1818
3875 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0371P)2]
where P = (Fo2 + 2Fc2)/3
3875 reflections(Δ/σ)max < 0.001
296 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.40 e Å3
0 constraints
Crystal data top
[Ni(C60H52N4)]γ = 91.402 (6)°
Mr = 887.77V = 1109.1 (7) Å3
Triclinic, P1Z = 1
a = 7.797 (3) ÅMo Kα radiation
b = 9.387 (3) ŵ = 0.48 mm1
c = 15.285 (5) ÅT = 118 K
α = 97.246 (6)°0.50 × 0.20 × 0.05 mm
β = 91.222 (4)°
Data collection top
Rigaku Saturn724
diffractometer
3233 reflections with I > 2σ(I)
17330 measured reflectionsRint = 0.070
3875 independent reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.37 e Å3
S = 1.00Δρmin = 0.40 e Å3
3875 reflectionsAbsolute structure: ?
296 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.00000.50000.00000.01798 (12)
N210.1442 (2)0.47152 (16)0.10290 (10)0.0185 (4)
N220.1822 (2)0.62389 (16)0.03788 (10)0.0192 (4)
C50.0499 (3)0.31349 (19)0.17545 (13)0.0185 (4)
C60.1022 (3)0.3901 (2)0.16960 (13)0.0198 (5)
C70.2375 (3)0.3969 (2)0.23403 (13)0.0247 (5)
H7A0.23830.35000.28560.030*
C80.3643 (3)0.4817 (2)0.20886 (14)0.0243 (5)
H8A0.47070.50590.23910.029*
C90.3069 (3)0.5284 (2)0.12716 (13)0.0194 (5)
C100.4031 (3)0.6194 (2)0.08102 (13)0.0204 (5)
C110.3407 (3)0.6617 (2)0.00254 (13)0.0197 (5)
C120.4362 (3)0.7542 (2)0.04785 (14)0.0244 (5)
H12A0.54760.79490.03370.029*
C130.3384 (3)0.7725 (2)0.11872 (14)0.0248 (5)
H13A0.36770.82830.16420.030*
C140.1820 (3)0.69232 (19)0.11298 (13)0.0190 (5)
C5A0.0738 (3)0.2335 (2)0.25355 (13)0.0205 (5)
C5B0.0381 (3)0.0855 (2)0.24777 (14)0.0230 (5)
C5C0.0207 (3)0.0055 (2)0.16833 (15)0.0263 (5)
H5CA0.04050.05340.11810.032*
C5D0.0488 (3)0.1376 (2)0.16363 (16)0.0334 (6)
H5DA0.08800.18840.11040.040*
C5E0.0197 (3)0.2119 (2)0.23800 (17)0.0360 (6)
H5EA0.03820.31220.23380.043*
C5F0.0339 (3)0.1403 (2)0.31441 (16)0.0321 (6)
H5FA0.05170.19130.36350.038*
C5G0.0645 (3)0.0104 (2)0.32312 (14)0.0255 (5)
C5H0.1190 (3)0.0864 (2)0.40177 (14)0.0276 (5)
H5HA0.13380.03670.45160.033*
C5I0.1523 (3)0.2321 (2)0.40970 (13)0.0230 (5)
C5J0.2098 (3)0.3101 (2)0.48906 (14)0.0318 (6)
H5JA0.21960.26280.54020.038*
C5K0.2508 (3)0.4502 (2)0.49355 (15)0.0393 (6)
H5KA0.28770.50030.54750.047*
C5L0.2383 (3)0.5230 (2)0.41624 (15)0.0347 (6)
H5LA0.27190.62000.41860.042*
C5M0.1797 (3)0.4549 (2)0.34139 (15)0.0298 (5)
H5MA0.16770.50610.29200.036*
C5N0.1344 (3)0.3070 (2)0.33320 (13)0.0230 (5)
C10A0.5771 (3)0.6803 (2)0.11646 (13)0.0235 (5)
H10A0.65770.67810.06710.028*
H10B0.62320.61890.15910.028*
C10B0.5667 (3)0.8359 (2)0.16236 (13)0.0265 (5)
H10C0.68350.88050.16700.032*
H10D0.49550.89130.12500.032*
C10C0.4915 (3)0.8477 (2)0.25444 (14)0.0279 (5)
H10E0.57180.80510.29430.033*
H10F0.38230.79090.25140.033*
C10D0.4574 (3)1.0030 (2)0.29382 (14)0.0287 (5)
H10G0.56371.06220.29160.034*
H10H0.36811.04250.25740.034*
C10E0.4000 (3)1.0138 (2)0.38747 (15)0.0356 (6)
H10I0.49380.98240.42460.043*
H10J0.30040.94730.39040.043*
C10F0.3500 (3)1.1641 (2)0.42523 (14)0.0316 (6)
H10K0.32921.16660.48840.047*
H10L0.24531.19000.39500.047*
H10M0.44301.23260.41660.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0227 (2)0.0162 (2)0.0154 (2)0.00037 (16)0.00200 (15)0.00351 (15)
N210.0227 (10)0.0156 (8)0.0174 (9)0.0013 (7)0.0034 (7)0.0021 (7)
N220.0240 (10)0.0184 (9)0.0155 (9)0.0016 (8)0.0008 (7)0.0030 (7)
C50.0243 (12)0.0137 (10)0.0171 (10)0.0003 (9)0.0026 (9)0.0004 (8)
C60.0279 (13)0.0145 (10)0.0170 (11)0.0015 (9)0.0004 (9)0.0020 (8)
C70.0307 (13)0.0231 (11)0.0212 (11)0.0003 (10)0.0011 (10)0.0069 (9)
C80.0244 (12)0.0235 (11)0.0252 (12)0.0005 (9)0.0043 (9)0.0048 (9)
C90.0219 (12)0.0161 (10)0.0198 (11)0.0005 (9)0.0000 (9)0.0005 (9)
C100.0215 (12)0.0177 (10)0.0211 (11)0.0032 (9)0.0025 (9)0.0015 (9)
C110.0208 (12)0.0171 (10)0.0204 (11)0.0007 (9)0.0021 (9)0.0005 (9)
C120.0243 (12)0.0245 (11)0.0246 (12)0.0043 (9)0.0021 (9)0.0047 (9)
C130.0282 (13)0.0248 (11)0.0221 (11)0.0045 (10)0.0024 (9)0.0061 (9)
C140.0249 (12)0.0138 (10)0.0184 (10)0.0005 (9)0.0027 (9)0.0028 (8)
C5A0.0206 (12)0.0199 (11)0.0209 (11)0.0033 (9)0.0013 (9)0.0036 (9)
C5B0.0215 (12)0.0224 (11)0.0254 (12)0.0028 (9)0.0011 (9)0.0050 (9)
C5C0.0235 (12)0.0243 (12)0.0312 (13)0.0006 (10)0.0029 (10)0.0029 (10)
C5D0.0297 (14)0.0295 (13)0.0400 (14)0.0025 (11)0.0049 (11)0.0001 (11)
C5E0.0338 (15)0.0204 (12)0.0548 (17)0.0030 (10)0.0046 (12)0.0073 (11)
C5F0.0275 (14)0.0275 (12)0.0445 (15)0.0023 (10)0.0012 (11)0.0166 (11)
C5G0.0227 (12)0.0242 (12)0.0308 (12)0.0018 (9)0.0011 (10)0.0088 (10)
C5H0.0259 (13)0.0333 (13)0.0259 (12)0.0043 (10)0.0008 (10)0.0135 (10)
C5I0.0234 (12)0.0244 (11)0.0218 (11)0.0032 (9)0.0020 (9)0.0056 (9)
C5J0.0353 (14)0.0375 (14)0.0232 (12)0.0075 (11)0.0003 (10)0.0075 (10)
C5K0.0509 (17)0.0376 (14)0.0268 (13)0.0036 (12)0.0092 (12)0.0069 (11)
C5L0.0490 (17)0.0188 (11)0.0359 (14)0.0024 (11)0.0132 (12)0.0006 (10)
C5M0.0370 (14)0.0257 (12)0.0282 (13)0.0016 (10)0.0020 (10)0.0090 (10)
C5N0.0238 (12)0.0220 (11)0.0234 (11)0.0015 (9)0.0003 (9)0.0035 (9)
C10A0.0212 (12)0.0290 (12)0.0209 (11)0.0013 (9)0.0002 (9)0.0059 (9)
C10B0.0222 (12)0.0306 (12)0.0262 (12)0.0058 (10)0.0007 (10)0.0035 (10)
C10C0.0286 (13)0.0284 (12)0.0269 (12)0.0013 (10)0.0015 (10)0.0048 (10)
C10D0.0265 (13)0.0316 (12)0.0282 (12)0.0031 (10)0.0030 (10)0.0057 (10)
C10E0.0428 (16)0.0354 (13)0.0285 (13)0.0020 (11)0.0001 (11)0.0033 (11)
C10F0.0368 (15)0.0288 (12)0.0289 (13)0.0039 (11)0.0004 (11)0.0019 (10)
Geometric parameters (Å, °) top
Ni—N221.9570 (17)C5E—H5EA0.9500
Ni—N22i1.9570 (17)C5F—C5G1.430 (3)
Ni—N21i1.9632 (17)C5F—H5FA0.9500
Ni—N211.9632 (17)C5G—C5H1.399 (3)
N21—C61.389 (2)C5H—C5I1.389 (3)
N21—C91.389 (3)C5H—H5HA0.9500
N22—C141.384 (2)C5I—C5J1.423 (3)
N22—C111.388 (3)C5I—C5N1.446 (3)
C5—C61.382 (3)C5J—C5K1.354 (3)
C5—C14i1.385 (3)C5J—H5JA0.9500
C5—C5A1.501 (3)C5K—C5L1.442 (3)
C6—C71.423 (3)C5K—H5KA0.9500
C7—C81.346 (3)C5L—C5M1.333 (3)
C7—H7A0.9500C5L—H5LA0.9500
C8—C91.441 (3)C5M—C5N1.433 (3)
C8—H8A0.9500C5M—H5MA0.9500
C9—C101.390 (3)C10A—C10B1.544 (3)
C10—C111.392 (3)C10A—H10A0.9900
C10—C10A1.521 (3)C10A—H10B0.9900
C11—C121.436 (3)C10B—C10C1.529 (3)
C12—C131.343 (3)C10B—H10C0.9900
C12—H12A0.9500C10B—H10D0.9900
C13—C141.427 (3)C10C—C10D1.538 (3)
C13—H13A0.9500C10C—H10E0.9900
C14—C5i1.385 (3)C10C—H10F0.9900
C5A—C5B1.416 (3)C10D—C10E1.501 (3)
C5A—C5N1.417 (3)C10D—H10G0.9900
C5B—C5C1.435 (3)C10D—H10H0.9900
C5B—C5G1.440 (3)C10E—C10F1.518 (3)
C5C—C5D1.359 (3)C10E—H10I0.9900
C5C—H5CA0.9500C10E—H10J0.9900
C5D—C5E1.426 (3)C10F—H10K0.9800
C5D—H5DA0.9500C10F—H10L0.9800
C5E—C5F1.352 (3)C10F—H10M0.9800
N22—Ni—N22i180.00 (8)C5H—C5G—C5F122.4 (2)
N22—Ni—N21i91.02 (7)C5H—C5G—C5B119.23 (19)
N22i—Ni—N21i88.98 (7)C5F—C5G—C5B118.4 (2)
N22—Ni—N2188.98 (7)C5I—C5H—C5G122.40 (19)
N22i—Ni—N2191.02 (7)C5I—C5H—H5HA118.8
N21i—Ni—N21180.00 (9)C5G—C5H—H5HA118.8
C6—N21—C9104.27 (16)C5H—C5I—C5J122.86 (19)
C6—N21—Ni126.74 (14)C5H—C5I—C5N118.78 (19)
C9—N21—Ni128.98 (13)C5J—C5I—C5N118.31 (19)
C14—N22—C11104.18 (16)C5K—C5J—C5I121.6 (2)
C14—N22—Ni127.19 (14)C5K—C5J—H5JA119.2
C11—N22—Ni128.63 (13)C5I—C5J—H5JA119.2
C6—C5—C14i123.17 (18)C5J—C5K—C5L119.8 (2)
C6—C5—C5A118.53 (18)C5J—C5K—H5KA120.1
C14i—C5—C5A118.30 (18)C5L—C5K—H5KA120.1
C5—C6—N21126.01 (18)C5M—C5L—C5K120.3 (2)
C5—C6—C7123.21 (18)C5M—C5L—H5LA119.8
N21—C6—C7110.77 (18)C5K—C5L—H5LA119.8
C8—C7—C6107.78 (19)C5L—C5M—C5N122.0 (2)
C8—C7—H7A126.1C5L—C5M—H5MA119.0
C6—C7—H7A126.1C5N—C5M—H5MA119.0
C7—C8—C9106.63 (19)C5A—C5N—C5M122.31 (19)
C7—C8—H8A126.7C5A—C5N—C5I119.88 (18)
C9—C8—H8A126.7C5M—C5N—C5I117.81 (18)
N21—C9—C10125.85 (19)C10—C10A—C10B112.21 (17)
N21—C9—C8110.55 (17)C10—C10A—H10A109.2
C10—C9—C8123.6 (2)C10B—C10A—H10A109.2
C9—C10—C11121.1 (2)C10—C10A—H10B109.2
C9—C10—C10A121.00 (19)C10B—C10A—H10B109.2
C11—C10—C10A117.87 (18)H10A—C10A—H10B107.9
N22—C11—C10126.47 (18)C10C—C10B—C10A113.98 (17)
N22—C11—C12110.47 (18)C10C—C10B—H10C108.8
C10—C11—C12123.1 (2)C10A—C10B—H10C108.8
C13—C12—C11107.1 (2)C10C—C10B—H10D108.8
C13—C12—H12A126.4C10A—C10B—H10D108.8
C11—C12—H12A126.4H10C—C10B—H10D107.7
C12—C13—C14107.17 (19)C10B—C10C—C10D113.40 (17)
C12—C13—H13A126.4C10B—C10C—H10E108.9
C14—C13—H13A126.4C10D—C10C—H10E108.9
N22—C14—C5i125.85 (19)C10B—C10C—H10F108.9
N22—C14—C13111.04 (18)C10D—C10C—H10F108.9
C5i—C14—C13123.11 (18)H10E—C10C—H10F107.7
C5B—C5A—C5N120.05 (18)C10E—C10D—C10C112.63 (18)
C5B—C5A—C5120.47 (18)C10E—C10D—H10G109.1
C5N—C5A—C5119.47 (17)C10C—C10D—H10G109.1
C5A—C5B—C5C122.32 (19)C10E—C10D—H10H109.1
C5A—C5B—C5G119.53 (19)C10C—C10D—H10H109.1
C5C—C5B—C5G118.13 (18)H10G—C10D—H10H107.8
C5D—C5C—C5B121.2 (2)C10D—C10E—C10F113.70 (18)
C5D—C5C—H5CA119.4C10D—C10E—H10I108.8
C5B—C5C—H5CA119.4C10F—C10E—H10I108.8
C5C—C5D—C5E120.5 (2)C10D—C10E—H10J108.8
C5C—C5D—H5DA119.8C10F—C10E—H10J108.8
C5E—C5D—H5DA119.8H10I—C10E—H10J107.7
C5F—C5E—C5D120.3 (2)C10E—C10F—H10K109.5
C5F—C5E—H5EA119.9C10E—C10F—H10L109.5
C5D—C5E—H5EA119.9H10K—C10F—H10L109.5
C5E—C5F—C5G121.6 (2)C10E—C10F—H10M109.5
C5E—C5F—H5FA119.2H10K—C10F—H10M109.5
C5G—C5F—H5FA119.2H10L—C10F—H10M109.5
Symmetry codes: (i) −x, −y+1, −z.
Table 1
Selected geometric parameters (Å)
top
Ni—N221.9570 (17)Ni—N211.9632 (17)
Acknowledgements top

This work was supported by a grant from Science Foundation Ireland (SFI P.I. 09/IN.1/B2650).

references
References top

Davis, N. K. S., Nicola, K. S., Pawlicki, M. & Anderson, H. L. (2008). Org. Lett. 10, 3945–3947.

Fleischer, E. B., Miller, C. K. & Webb, L. E. (1964). J. Am. Chem. Soc. 86, 2342–2348.

Gallucci, J. C., Swepston, P. N. & Ibers, J. A. (1982). Acta Cryst. B38, 2134–2139.

Hoard, J. L. (1973). Ann. N. Y. Acad. Sci. 206, 18–31.

Hope, H. (1994). Prog. Inorg. Chem. 41, 1–19.

Lee, Y. J. & Scheidt, W. R. (1987). Struct. Bonding (Berlin), 64, 1–69.

Rigaku (2008). CrystalClear . Rigaku/MSC, The Woodlands, Texas, USA.

Runge, S., Senge, M. O. & Ruhlandt-Senge, K. (1999). Z. Naturforsch. Teil B 54, 662–666.

Senge, M. O. (2006). Chem. Commun. pp. 243–256.

Senge, M. O., Bischoff, I., Nelson, N. Y. & Smith, K. M. (1999). J. Porphyrins Phthalocyanines, 3, 99–116.

Senge, M. O., Renner, M. W., Kalisch, W. W. & Fajer, J. (2000). J. Chem. Soc. Dalton Trans. pp. 381–385.

Senge, M. O., Shaker, Y. M., Pintea, M., Ryppa, C., Hatscher, S. S., Ryan, A. & Sergeeva, Y. (2010). Eur. J. Org. Chem. In the press. Any update?

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sooambar, C., Troiani, V., Bruno, C., Marcaccio, M., Paolucci, F., Listorti, A., Belbakra, A., Armaroli, N., Magistrato, A., De Zorzi, R., Geremia, S. & Bonifazi, D. (2009). Org. Biomol. Chem. 7, 2402–2413.

Volz, H. & Schäffer, H. (1985). Chem. Ztg, 109, 308–309.