metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ6-pyridine-2,4-di­carboxyl­ato-barium]

aCollege of Science, Northwest A&F University, Yangling 712100, Shanxi Province, People's Republic of China, bHospital, Northwest A&F University, Yangling 712100, Shanxi Province, People's Republic of China, and cStudents Service, Northwest A&F University, Yangling 712100, Shanxi Province, People's Republic of China
*Correspondence e-mail: shuaiqi@nwsuaf.edu.cn

(Received 10 May 2010; accepted 17 June 2010; online 23 June 2010)

In the title complex, [Ba(C7H3NO4)]n, the coordination geometry around the BaII ion can be described as a distorted bicapped trigonal-prismatic BaNO7 arrangement. The pyridine-2,4-dicarb­oxy­lic acid ligands exhibit a new coordination mode. Adjacent metal centers are linked by the O atoms of the pyridine-2,4-dicarb­oxy­lic acid ligands, and then form a three-dimensional supra­molecular polymeric framework.

Related literature

For related structures, see: Frisch & Cahill (2006[Frisch, M. & Cahill, C. L. (2006). Dalton Trans. pp. 4679-4690.]); Huang et al. (2007[Huang, Y. G., Zhou, Y., Yuan, D. Q., Wu, B. L., Jiang, F. L. & Hong, M. C. (2007). J. Mol. Struct. 830, 85-93.]); Li et al. (2008[Li, Z. G., Wang, G. H., Jia, H. Q., Hu, N. H. & Xu, J. W. (2008). CrystEngComm, 10, 173-176.]); Liang et al. (2002[Liang, Y. C., Cao Hong, M. C., Sun, D. F., Zhao, Y. J., Weng, J. B. & Wang, R. H. (2002). Inorg. Chem. Commun. 5, 366-368.]); Noro et al. (2002[Noro, S., Kitagawa, S., Yamashita, M. & Wada, T. (2002). CrystEngComm, 4, 162-164.]); Soleimannejad et al. (2009[Soleimannejad, J., Mohammadzadeh, Y., Aghabozorg, H. & Derikvand, Z. (2009). Acta Cryst. E65, m922.]); Zhang (2005[Zhang, X. M. (2005). Inorg. Chim. Acta, 358, 1865-1872.]).

[Scheme 1]

Experimental

Crystal data
  • [Ba(C7H3NO4)]

  • Mr = 302.44

  • Monoclinic, C 2/c

  • a = 11.7570 (11) Å

  • b = 7.2121 (7) Å

  • c = 17.4547 (16) Å

  • β = 93.471 (1)°

  • V = 1477.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.35 mm−1

  • T = 296 K

  • 0.37 × 0.34 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.325, Tmax = 0.783

  • 4192 measured reflections

  • 1662 independent reflections

  • 1547 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.048

  • S = 1.03

  • 1662 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Complex of SrII ion with pyridine-2,4-dicarboxylic acid, [Sr(C7H3NO4)(H2O)2]n, has been previously studied (Soleimannejad et al., 2009), which is a two-dimensional polymer.

Here we report a complex (I) assembled by alkaline earth metal BaII ion with pyridine-2,4-dicarboxylic acid ligand. The formula for the complex is [Ba(C7H3NO4)]n, X-ray crystal analyse reveals that the pyridine-2,4-dicarboxylic acid ligands in the complex are completely deprotonated, which is the same with the complex of [Sr(C7H3NO4)(H2O)2]n.

In the title complex, the asymmetric unit consists of one BaII ion and one pyridine-2,4-dicarboxylate. The coordination geometry around BaII ion (Fig. 1) could be described as a distorted bicapped trigonal prism arrangement with coordination number of 8, where N1, O2B and O4D form the top plane of the trigonal prism, and the bottom plane is completed by O3A, O4E, and O1C, while O1 and O3E capped two quadrilateral faces formed by N1, O3A, O1C, O4D and O2B, O4E, O1C, O4D, respectively. All the coordinated atoms in the title complex are oxygen atoms and nitrogen atoms of pyridine-2,4-dicarboxylic acid ligands, which is different from the complex of [Sr(C7H3NO4)(H2O)2]n, oxygen atoms of water molecules also take part in the coordination with metal centers. The bond length of Ba—Ocarboxylate bonds range from 2.706 (2) to 2.8941 (19) Å, which compare well with the mean value determined from the CSD [2.798 (7) Å for Ba—Ocarboxylate bond](Table 1). The coordination mode (Fig. 2) of pyridine-2,4-dicarboxylic acid ligands can be classified as µ6-(κ8N, O1: O1: O2: O3: O3: O4: O4), that is, two 4-position carboxylate oxygen atoms (O3 and O4) coordinate to three BaII ions, one of the 2-position carboxylate oxygen atoms (O1) coordinates to two BaII ions, at the same time, this oxygen atom chelate a BaII ion with the pyridyl nitrogen (N1). The other 2-position oxygen atom (O2) coordinates to one BaII ion. This coordination mode is not observed in previous reports (Soleimannejad et al., 2009; Huang et al., 2007; Zhang, 2005; Liang et al., 2002; Li et al., 2008; Frisch et al., 2006; Noro et al., 2002). The adjacent metal centers are linked by the oxygen and nitrogen atoms of pyridine-2,4-dicarboxylic acid ligands, and then form a three-dimensional supramolecular polymeric framework (Fig. 3), while in the complex of Sr(C7H3NO4)(H2O)2]n (Soleimannejad et al., 2009), the three-dimensional structure is constructed by non-covalent interactions consisting of O—H···O hydrogen bonds and π-π stacking interactions.

Related literature top

For related structures, see: Frisch & Cahill (2006); Huang et al. (2007); Li et al. (2008); Liang et al. (2002); Noro et al. (2002); Soleimannejad et al. (2009); Zhang (2005).

Experimental top

A mixture of barium chloride dihydrate (0.0244 g, 0.1 mmol), sodium hydroxide (0.0080 g, 0.2 mmol), pyridine-2,4-dicarboxylic acid (0.0167 g, 0.1 mmol), and H2O (3 mL) was placed in a Parr Teflon-lined stainless stell vessel (25 ml), and then the vessel was sealed and heated at 443.15 K for 4 days. Then the vessel was cooled to 373.15 K at a rate of 5 K h-1 and slowly cooled to room temperature. Colorless, rectangular single crystals suitable for X-ray diffraction were obtained.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination environment of BaII ion in the title complex. Non-hydrogen atoms are shown as 30% probability ellipsoids. Hydrogen atoms are omitted for clarity. Symmetry codes: (A) -x + 1, -y, -z + 1; (B) x - 1/2, y + 1/2, z; (C) -x + 1, y, -z + 1/2; (D) -x + 1, -y + 1, -z + 1; (E) x - 1/2, -y + 1/2, z - 1/2.
[Figure 2] Fig. 2. Coordination mode of pyridine-2,4-dicarboxylic acid ligands in the title complex. Non-hydrogen atoms are shown as 30% probability ellipsoids. Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. View of three-dimensional framework along b axis in the title complex.
Poly[µ6-pyridine-2,4-dicarboxylato-barium] top
Crystal data top
[Ba(C7H3NO4)]F(000) = 1120
Mr = 302.44Dx = 2.720 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2902 reflections
a = 11.7570 (11) Åθ = 2.3–27.5°
b = 7.2121 (7) ŵ = 5.35 mm1
c = 17.4547 (16) ÅT = 296 K
β = 93.471 (1)°Block, colorless
V = 1477.3 (2) Å30.37 × 0.34 × 0.07 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
1662 independent reflections
Radiation source: fine-focus sealed tube1547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
phi and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1513
Tmin = 0.325, Tmax = 0.783k = 99
4192 measured reflectionsl = 1622
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0287P)2 + 1.379P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
1662 reflectionsΔρmax = 0.70 e Å3
119 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00237 (13)
Crystal data top
[Ba(C7H3NO4)]V = 1477.3 (2) Å3
Mr = 302.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.7570 (11) ŵ = 5.35 mm1
b = 7.2121 (7) ÅT = 296 K
c = 17.4547 (16) Å0.37 × 0.34 × 0.07 mm
β = 93.471 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1662 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1547 reflections with I > 2σ(I)
Tmin = 0.325, Tmax = 0.783Rint = 0.018
4192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.03Δρmax = 0.70 e Å3
1662 reflectionsΔρmin = 0.45 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.332689 (13)0.35356 (2)0.305017 (8)0.01561 (9)
N10.44887 (19)0.2899 (3)0.45739 (13)0.0175 (5)
O10.55983 (18)0.2658 (3)0.32482 (11)0.0282 (5)
O20.68945 (17)0.0756 (3)0.38112 (12)0.0260 (4)
O30.69395 (18)0.0151 (3)0.67349 (12)0.0255 (4)
O40.63043 (17)0.2757 (3)0.72435 (11)0.0214 (4)
C30.5531 (2)0.2109 (4)0.45821 (15)0.0151 (5)
C40.6129 (2)0.1626 (3)0.52576 (17)0.0179 (6)
H40.68280.10270.52450.021*
C50.5685 (2)0.2036 (4)0.59553 (15)0.0162 (5)
C60.4620 (2)0.2887 (4)0.59501 (16)0.0188 (5)
H60.42990.32080.64060.023*
C70.4053 (2)0.3242 (4)0.52447 (17)0.0196 (6)
H70.33260.37490.52410.023*
C10.6053 (2)0.1797 (4)0.38175 (17)0.0190 (6)
C20.6353 (2)0.1607 (3)0.67076 (16)0.0169 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01808 (12)0.01548 (11)0.01308 (12)0.00230 (5)0.00070 (7)0.00040 (5)
N10.0179 (11)0.0184 (11)0.0159 (11)0.0011 (9)0.0007 (9)0.0004 (9)
O10.0256 (11)0.0458 (13)0.0133 (10)0.0028 (10)0.0015 (8)0.0056 (9)
O20.0215 (10)0.0315 (11)0.0258 (11)0.0039 (9)0.0080 (8)0.0055 (9)
O30.0332 (11)0.0187 (10)0.0231 (11)0.0011 (9)0.0093 (9)0.0031 (8)
O40.0263 (10)0.0228 (10)0.0148 (10)0.0029 (8)0.0006 (8)0.0009 (8)
C30.0169 (12)0.0139 (12)0.0146 (13)0.0013 (10)0.0007 (10)0.0002 (10)
C40.0175 (13)0.0161 (12)0.0200 (14)0.0007 (9)0.0012 (11)0.0003 (10)
C50.0187 (13)0.0135 (11)0.0160 (13)0.0029 (10)0.0014 (10)0.0026 (10)
C60.0234 (14)0.0173 (12)0.0162 (13)0.0002 (11)0.0037 (10)0.0026 (11)
C70.0156 (13)0.0212 (13)0.0220 (15)0.0030 (10)0.0019 (11)0.0008 (11)
C10.0163 (13)0.0226 (13)0.0183 (14)0.0041 (11)0.0027 (10)0.0019 (11)
C20.0204 (14)0.0165 (13)0.0137 (13)0.0066 (10)0.0003 (11)0.0039 (10)
Geometric parameters (Å, º) top
Ba1—O3i2.706 (2)O3—Ba1i2.706 (2)
Ba1—O2ii2.727 (2)O3—Ba1vii2.8941 (19)
Ba1—O1iii2.735 (2)O4—C21.254 (3)
Ba1—O12.746 (2)O4—Ba1iv2.762 (2)
Ba1—O4iv2.762 (2)O4—Ba1vii2.8463 (19)
Ba1—O4v2.8463 (19)C3—C41.380 (4)
Ba1—O3v2.8941 (19)C3—C11.519 (4)
Ba1—N12.951 (2)C4—C51.385 (4)
Ba1—C2v3.199 (3)C4—H40.9300
N1—C71.329 (4)C5—C61.394 (4)
N1—C31.351 (3)C5—C21.520 (4)
O1—C11.263 (3)C6—C71.388 (4)
O1—Ba1iii2.735 (2)C6—H60.9300
O2—C11.242 (3)C7—H70.9300
O2—Ba1vi2.727 (2)C2—Ba1vii3.199 (3)
O3—C21.256 (3)
O3i—Ba1—O2ii115.43 (7)N1—Ba1—Ba1ix132.65 (4)
O3i—Ba1—O1iii87.17 (7)C2v—Ba1—Ba1ix55.55 (4)
O2ii—Ba1—O1iii150.40 (7)Ba1viii—Ba1—Ba1ix107.398 (9)
O3i—Ba1—O182.87 (7)O3i—Ba1—Ba1iii99.87 (5)
O2ii—Ba1—O1134.32 (6)O2ii—Ba1—Ba1iii142.45 (5)
O1iii—Ba1—O163.66 (7)O1iii—Ba1—Ba1iii35.23 (4)
O3i—Ba1—O4iv176.22 (6)O1—Ba1—Ba1iii35.07 (4)
O2ii—Ba1—O4iv68.31 (6)O4iv—Ba1—Ba1iii76.62 (4)
O1iii—Ba1—O4iv89.12 (7)O4v—Ba1—Ba1iii121.12 (4)
O1—Ba1—O4iv94.82 (7)O3v—Ba1—Ba1iii97.31 (5)
O3i—Ba1—O4v69.30 (6)N1—Ba1—Ba1iii90.91 (5)
O2ii—Ba1—O4v84.91 (6)C2v—Ba1—Ba1iii107.64 (5)
O1iii—Ba1—O4v85.89 (6)Ba1viii—Ba1—Ba1iii100.719 (6)
O1—Ba1—O4v139.80 (6)Ba1ix—Ba1—Ba1iii100.719 (6)
O4iv—Ba1—O4v111.18 (5)C7—N1—C3117.8 (2)
O3i—Ba1—O3v111.55 (5)C7—N1—Ba1125.67 (17)
O2ii—Ba1—O3v81.90 (6)C3—N1—Ba1116.43 (17)
O1iii—Ba1—O3v71.64 (6)C1—O1—Ba1iii124.82 (18)
O1—Ba1—O3v132.26 (6)C1—O1—Ba1125.07 (18)
O4iv—Ba1—O3v67.86 (5)Ba1iii—O1—Ba1109.69 (7)
O4v—Ba1—O3v45.65 (6)C1—O2—Ba1vi151.01 (19)
O3i—Ba1—N176.91 (6)C2—O3—Ba1i139.38 (19)
O2ii—Ba1—N185.30 (6)C2—O3—Ba1vii92.19 (16)
O1iii—Ba1—N1119.93 (6)Ba1i—O3—Ba1vii106.03 (6)
O1—Ba1—N157.12 (6)C2—O4—Ba1iv119.16 (17)
O4iv—Ba1—N1104.39 (6)C2—O4—Ba1vii94.48 (17)
O4v—Ba1—N1136.23 (6)Ba1iv—O4—Ba1vii105.85 (6)
O3v—Ba1—N1166.82 (6)N1—C3—C4122.0 (3)
O3i—Ba1—C2v89.14 (6)N1—C3—C1117.9 (2)
O2ii—Ba1—C2v86.19 (6)C4—C3—C1120.1 (2)
O1iii—Ba1—C2v74.73 (7)C3—C4—C5119.8 (3)
O1—Ba1—C2v137.89 (7)C3—C4—H4120.1
O4iv—Ba1—C2v90.59 (6)C5—C4—H4120.1
O4v—Ba1—C2v23.01 (7)C4—C5—C6118.3 (2)
O3v—Ba1—C2v23.11 (6)C4—C5—C2120.9 (2)
N1—Ba1—C2v158.59 (7)C6—C5—C2120.8 (3)
O3i—Ba1—Ba1viii38.44 (4)C7—C6—C5118.0 (3)
O2ii—Ba1—Ba1viii114.66 (4)C7—C6—H6121.0
O1iii—Ba1—Ba1viii70.63 (5)C5—C6—H6121.0
O1—Ba1—Ba1viii105.21 (5)N1—C7—C6123.9 (3)
O4iv—Ba1—Ba1viii140.32 (4)N1—C7—H7118.1
O4v—Ba1—Ba1viii36.42 (4)C6—C7—H7118.1
O3v—Ba1—Ba1viii73.38 (4)O2—C1—O1126.1 (3)
N1—Ba1—Ba1viii115.27 (5)O2—C1—C3117.5 (3)
C2v—Ba1—Ba1viii51.86 (4)O1—C1—C3116.4 (2)
O3i—Ba1—Ba1ix143.17 (4)O4—C2—O3125.1 (3)
O2ii—Ba1—Ba1ix58.04 (5)O4—C2—C5117.7 (2)
O1iii—Ba1—Ba1ix92.37 (5)O3—C2—C5117.2 (2)
O1—Ba1—Ba1ix129.33 (5)O4—C2—Ba1vii62.52 (14)
O4iv—Ba1—Ba1ix37.73 (4)O3—C2—Ba1vii64.71 (14)
O4v—Ba1—Ba1ix73.94 (4)C5—C2—Ba1vii162.39 (18)
O3v—Ba1—Ba1ix35.53 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z; (iii) x+1, y, z+1/2; (iv) x+1, y+1, z+1; (v) x1/2, y+1/2, z1/2; (vi) x+1/2, y1/2, z; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y1/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ba(C7H3NO4)]
Mr302.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)11.7570 (11), 7.2121 (7), 17.4547 (16)
β (°) 93.471 (1)
V3)1477.3 (2)
Z8
Radiation typeMo Kα
µ (mm1)5.35
Crystal size (mm)0.37 × 0.34 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.325, 0.783
No. of measured, independent and
observed [I > 2σ(I)] reflections
4192, 1662, 1547
Rint0.018
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.048, 1.03
No. of reflections1662
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.45

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Scientific Research Foundation of Northwest A&F University (grant No. Z111020828).

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrisch, M. & Cahill, C. L. (2006). Dalton Trans. pp. 4679–4690.  Web of Science CSD CrossRef Google Scholar
First citationHuang, Y. G., Zhou, Y., Yuan, D. Q., Wu, B. L., Jiang, F. L. & Hong, M. C. (2007). J. Mol. Struct. 830, 85–93.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z. G., Wang, G. H., Jia, H. Q., Hu, N. H. & Xu, J. W. (2008). CrystEngComm, 10, 173–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiang, Y. C., Cao Hong, M. C., Sun, D. F., Zhao, Y. J., Weng, J. B. & Wang, R. H. (2002). Inorg. Chem. Commun. 5, 366–368.  Web of Science CSD CrossRef CAS Google Scholar
First citationNoro, S., Kitagawa, S., Yamashita, M. & Wada, T. (2002). CrystEngComm, 4, 162–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoleimannejad, J., Mohammadzadeh, Y., Aghabozorg, H. & Derikvand, Z. (2009). Acta Cryst. E65, m922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X. M. (2005). Inorg. Chim. Acta, 358, 1865–1872.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds