organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl­carbamo­thioyl-2-chloro­benzamide

aKey Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: rosaguoli@163.com

(Received 3 June 2010; accepted 19 June 2010; online 26 June 2010)

In the title compound, C15H13ClN2OS, the dihedral angles between the sulfourea group and the benzene ring and the chloro­benzene ring are 35.8 (6) and 81.6 (6)° respectively. An intra­molecular N—H⋯O inter­action occurs. In the crystal, a combination of inter­molecular ππ stacking inter­actions [centroid–centroid distance = 4.0616 (16) Å] and N—H⋯S hydrogen bonds stabilizes the structure.

Related literature

For general background to the chemistry and biological activity of thio­urea derivatives and their use, see: Jain & Rao (2003[Jain, V. K. & Rao, J. T. (2003). J. Inst. Chem. (India), 75, 24-26.]); Zeng et al. (2003[Zeng, R. S., Zou, J. P., Zhi, S. J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657-1659.]); Xu et al. (2004[Xu, Y., Hua, W., Liu, X. & Zhu, D. (2004). Chin. J. Org. Chem. 24, 1217-1222.]); Zheng et al. (2004[Zheng, W., Yates, S. R., Papiernik, S. K. & Guo, M. (2004). Environ. Sci. Technol. 38, 6855-6860.]); D'hooghe et al. (2005[D'hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227-232.]); Saeed et al. (2008[Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008). Acta Cryst. E64, o1485.], 2009[Saeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, o1870-o1871.], 2010[Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323-1331.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13ClN2OS

  • Mr = 304.78

  • Triclinic, [P \overline 1]

  • a = 7.347 (2) Å

  • b = 9.658 (3) Å

  • c = 11.003 (3) Å

  • α = 110.150 (5)°

  • β = 90.767 (3)°

  • γ = 104.058 (3)°

  • V = 707.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 153 K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR, Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.852, Tmax = 0.886

  • 5691 measured reflections

  • 2481 independent reflections

  • 2194 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.01

  • 2481 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1i 0.86 (2) 2.53 (2) 3.3698 (18) 166.2 (18)
N2—H2N⋯O1 0.82 (2) 2.01 (2) 2.669 (2) 137 (2)
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-(benzylcarbamothioyl)-2-chlorobenzamide derivatives are of great importance owing to their wide-ranging biological properties (Zeng et al. (2003)). The title compound is one of the key intermediates in our synthetic investigations of antiviral drugs. We report here its crystal structure. As shown in Fig. 1, the dihedral angle of 35.8 (6)° and 81.6 (6)° between the connecting sulfourea unit and the benzene ring, and between the 2-chloro-benzene ring and the connecting sulfourea group, respectively. A combination of intermolecular π-π packing interaction, N—H···O and N—H···S hydrogen bonds help stabilize the structure. In addition, weak C—H···π interactions are also present.

Related literature top

For general background to the chemistry and biological activity of thiourea derivatives and their use, see: Jain & Rao (2003); Zeng et al. (2003); Xu et al. (2004); Zheng et al. (2004); D'hooghe et al. (2005); Saeed et al. (2008, 2009, 2010).

Experimental top

A solution of 0.23 g (3 mmol) of ammonium thiocyanate in 7 ml of acetonitrile was added to a solution of 0.52 g (3 mmol) of 2-chlorobenzoyl chloride in 2.5 ml of toluene. The mixture was heated for 5 min at 40°C and filtered from ammonium chloride, the filtrate was added to a solution of 0.32 g (3 mmol) of phenylmethanamine in 5 ml of acetonitrile, the mixture was stirred for 3 h at room temperature and evaporated, and the residue was washed with ethanol and recrystallized from ethanol. Yield 0.77 g (85%). Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of dichloromethane.

Refinement top

Amine hydrogens were located in a difference map and refined freely. The reminaing H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
N-Benzylcarbamothioyl-2-chlorobenzamide top
Crystal data top
C15H13ClN2OSZ = 2
Mr = 304.78F(000) = 316
Triclinic, P1Dx = 1.432 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.347 (2) ÅCell parameters from 2259 reflections
b = 9.658 (3) Åθ = 3.2–27.5°
c = 11.003 (3) ŵ = 0.41 mm1
α = 110.150 (5)°T = 153 K
β = 90.767 (3)°Block, colorless
γ = 104.058 (3)°0.40 × 0.30 × 0.30 mm
V = 707.0 (4) Å3
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2481 independent reflections
Radiation source: Rotating Anode2194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 28.6 pixels mm-1θmax = 25.3°, θmin = 3.2°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1111
Tmin = 0.852, Tmax = 0.886l = 1313
5691 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.265P]
where P = (Fo2 + 2Fc2)/3
2481 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H13ClN2OSγ = 104.058 (3)°
Mr = 304.78V = 707.0 (4) Å3
Triclinic, P1Z = 2
a = 7.347 (2) ÅMo Kα radiation
b = 9.658 (3) ŵ = 0.41 mm1
c = 11.003 (3) ÅT = 153 K
α = 110.150 (5)°0.40 × 0.30 × 0.30 mm
β = 90.767 (3)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2481 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2194 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.886Rint = 0.017
5691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.23 e Å3
2481 reflectionsΔρmin = 0.18 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.69955 (6)0.10088 (5)0.08296 (4)0.03365 (14)
S10.81096 (6)0.64421 (5)0.00524 (4)0.02590 (13)
O10.71779 (16)0.46704 (14)0.34073 (11)0.0283 (3)
N10.84005 (19)0.48399 (15)0.15434 (13)0.0203 (3)
N20.62797 (19)0.63073 (16)0.20842 (13)0.0219 (3)
C10.9133 (2)0.18430 (18)0.18156 (14)0.0202 (3)
C21.0373 (2)0.09656 (19)0.18009 (15)0.0243 (4)
H21.00620.00870.12670.029*
C31.2074 (2)0.1651 (2)0.25780 (16)0.0264 (4)
H31.29530.10690.25620.032*
C41.2512 (2)0.3177 (2)0.33806 (16)0.0261 (4)
H41.36780.36320.39190.031*
C51.1247 (2)0.40367 (18)0.33975 (15)0.0226 (3)
H51.15390.50790.39560.027*
C60.9550 (2)0.33762 (17)0.25978 (14)0.0181 (3)
C70.8239 (2)0.43410 (17)0.25728 (15)0.0192 (3)
C80.7526 (2)0.58559 (17)0.12955 (14)0.0193 (3)
C90.5298 (2)0.74124 (19)0.19805 (16)0.0254 (4)
H9A0.45280.69950.11260.030*
H9B0.62340.83660.20310.030*
C100.4041 (2)0.77650 (17)0.30540 (15)0.0201 (3)
C110.4601 (2)0.79494 (18)0.43245 (15)0.0227 (3)
H110.58050.78380.45300.027*
C120.3419 (2)0.82945 (18)0.52955 (16)0.0253 (4)
H120.38050.84000.61580.030*
C130.1679 (2)0.84838 (18)0.50053 (17)0.0279 (4)
H130.08680.87220.56680.033*
C140.1120 (2)0.83262 (19)0.37480 (17)0.0285 (4)
H140.00650.84740.35520.034*
C150.2287 (2)0.79521 (19)0.27727 (16)0.0248 (4)
H150.18840.78230.19070.030*
H1N0.924 (3)0.459 (2)0.1044 (18)0.030 (5)*
H2N0.605 (3)0.593 (2)0.2644 (19)0.032 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0275 (2)0.0300 (2)0.0343 (3)0.00316 (18)0.00924 (18)0.00382 (19)
S10.0321 (2)0.0347 (3)0.0234 (2)0.01932 (19)0.01270 (17)0.01826 (19)
O10.0315 (7)0.0388 (7)0.0274 (6)0.0197 (6)0.0153 (5)0.0201 (6)
N10.0235 (7)0.0238 (7)0.0197 (7)0.0131 (6)0.0087 (6)0.0103 (6)
N20.0253 (7)0.0261 (7)0.0240 (7)0.0137 (6)0.0106 (6)0.0158 (6)
C10.0195 (8)0.0234 (8)0.0171 (8)0.0041 (6)0.0018 (6)0.0077 (7)
C20.0319 (9)0.0219 (8)0.0223 (8)0.0115 (7)0.0074 (7)0.0086 (7)
C30.0250 (9)0.0334 (9)0.0304 (9)0.0158 (7)0.0087 (7)0.0176 (8)
C40.0183 (8)0.0344 (9)0.0298 (9)0.0058 (7)0.0004 (7)0.0175 (8)
C50.0233 (8)0.0213 (8)0.0228 (8)0.0030 (7)0.0018 (6)0.0095 (7)
C60.0194 (8)0.0211 (8)0.0171 (8)0.0062 (6)0.0062 (6)0.0103 (7)
C70.0193 (8)0.0198 (8)0.0187 (8)0.0041 (6)0.0027 (6)0.0080 (7)
C80.0200 (8)0.0195 (8)0.0189 (8)0.0065 (6)0.0025 (6)0.0066 (7)
C90.0302 (9)0.0292 (9)0.0269 (9)0.0174 (7)0.0105 (7)0.0157 (8)
C100.0223 (8)0.0159 (7)0.0248 (8)0.0066 (6)0.0066 (6)0.0095 (7)
C110.0216 (8)0.0228 (8)0.0262 (9)0.0071 (7)0.0036 (6)0.0108 (7)
C120.0308 (9)0.0222 (8)0.0226 (8)0.0061 (7)0.0059 (7)0.0082 (7)
C130.0293 (9)0.0228 (9)0.0325 (10)0.0089 (7)0.0150 (7)0.0094 (8)
C140.0207 (9)0.0278 (9)0.0393 (10)0.0115 (7)0.0066 (7)0.0114 (8)
C150.0259 (9)0.0256 (8)0.0259 (9)0.0109 (7)0.0029 (7)0.0101 (7)
Geometric parameters (Å, º) top
Cl1—C11.7409 (16)C5—C61.390 (2)
S1—C81.6752 (16)C5—H50.9500
O1—C71.2207 (19)C6—C71.500 (2)
N1—C71.371 (2)C9—C101.506 (2)
N1—C81.3913 (19)C9—H9A0.9900
N1—H1N0.85 (2)C9—H9B0.9900
N2—C81.318 (2)C10—C151.389 (2)
N2—C91.459 (2)C10—C111.390 (2)
N2—H2N0.82 (2)C11—C121.388 (2)
C1—C21.383 (2)C11—H110.9500
C1—C61.386 (2)C12—C131.383 (2)
C2—C31.382 (2)C12—H120.9500
C2—H20.9500C13—C141.384 (3)
C3—C41.386 (2)C13—H130.9500
C3—H30.9500C14—C151.387 (2)
C4—C51.385 (2)C14—H140.9500
C4—H40.9500C15—H150.9500
C7—N1—C8127.85 (13)N2—C8—N1116.48 (14)
C7—N1—H1N116.5 (13)N2—C8—S1124.11 (12)
C8—N1—H1N115.2 (13)N1—C8—S1119.41 (11)
C8—N2—C9122.95 (14)N2—C9—C10110.88 (13)
C8—N2—H2N117.3 (13)N2—C9—H9A109.5
C9—N2—H2N119.8 (13)C10—C9—H9A109.5
C2—C1—C6121.61 (15)N2—C9—H9B109.5
C2—C1—Cl1119.44 (13)C10—C9—H9B109.5
C6—C1—Cl1118.95 (12)H9A—C9—H9B108.1
C3—C2—C1118.67 (15)C15—C10—C11118.98 (14)
C3—C2—H2120.7C15—C10—C9118.94 (14)
C1—C2—H2120.7C11—C10—C9122.06 (14)
C2—C3—C4120.76 (15)C12—C11—C10120.64 (15)
C2—C3—H3119.6C12—C11—H11119.7
C4—C3—H3119.6C10—C11—H11119.7
C5—C4—C3119.94 (15)C13—C12—C11119.88 (16)
C5—C4—H4120.0C13—C12—H12120.1
C3—C4—H4120.0C11—C12—H12120.1
C4—C5—C6120.07 (15)C12—C13—C14119.91 (15)
C4—C5—H5120.0C12—C13—H13120.0
C6—C5—H5120.0C14—C13—H13120.0
C1—C6—C5118.92 (14)C13—C14—C15120.18 (15)
C1—C6—C7121.51 (14)C13—C14—H14119.9
C5—C6—C7119.54 (14)C15—C14—H14119.9
O1—C7—N1124.11 (14)C14—C15—C10120.39 (15)
O1—C7—C6122.83 (13)C14—C15—H15119.8
N1—C7—C6113.03 (13)C10—C15—H15119.8
C6—C1—C2—C30.7 (2)C5—C6—C7—N198.18 (17)
Cl1—C1—C2—C3179.23 (12)C9—N2—C8—N1177.65 (14)
C1—C2—C3—C41.6 (2)C9—N2—C8—S11.7 (2)
C2—C3—C4—C50.8 (2)C7—N1—C8—N25.7 (2)
C3—C4—C5—C60.8 (2)C7—N1—C8—S1173.68 (13)
C2—C1—C6—C50.9 (2)C8—N2—C9—C10177.02 (15)
Cl1—C1—C6—C5179.18 (11)N2—C9—C10—C15141.11 (15)
C2—C1—C6—C7177.52 (14)N2—C9—C10—C1140.6 (2)
Cl1—C1—C6—C72.4 (2)C15—C10—C11—C120.9 (2)
C4—C5—C6—C11.6 (2)C9—C10—C11—C12179.12 (15)
C4—C5—C6—C7176.77 (14)C10—C11—C12—C131.1 (2)
C8—N1—C7—O14.5 (3)C11—C12—C13—C140.1 (2)
C8—N1—C7—C6173.81 (14)C12—C13—C14—C151.1 (3)
C1—C6—C7—O1101.52 (19)C13—C14—C15—C101.4 (3)
C5—C6—C7—O180.1 (2)C11—C10—C15—C140.4 (2)
C1—C6—C7—N180.19 (18)C9—C10—C15—C14177.92 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.86 (2)2.53 (2)3.3698 (18)166.2 (18)
N2—H2N···O10.82 (2)2.01 (2)2.669 (2)137 (2)
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H13ClN2OS
Mr304.78
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)7.347 (2), 9.658 (3), 11.003 (3)
α, β, γ (°)110.150 (5), 90.767 (3), 104.058 (3)
V3)707.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.852, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
5691, 2481, 2194
Rint0.017
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.01
No. of reflections2481
No. of parameters189
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.86 (2)2.53 (2)3.3698 (18)166.2 (18)
N2—H2N···O10.82 (2)2.01 (2)2.669 (2)137 (2)
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationD'hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227–232.  Web of Science PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR, Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJain, V. K. & Rao, J. T. (2003). J. Inst. Chem. (India), 75, 24–26.  CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSaeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008). Acta Cryst. E64, o1485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSaeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, o1870–o1871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y., Hua, W., Liu, X. & Zhu, D. (2004). Chin. J. Org. Chem. 24, 1217–1222.  CAS Google Scholar
First citationZeng, R. S., Zou, J. P., Zhi, S. J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657–1659.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZheng, W., Yates, S. R., Papiernik, S. K. & Guo, M. (2004). Environ. Sci. Technol. 38, 6855–6860.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds