organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Phenyl-3,4,4a,5,6,12c-hexa­hydro-2H-benzo[f]pyrano[3,2-c]quinoline

aSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou Jiangsu 221116, People's Republic of China
*Correspondence e-mail: dbx19722@xznu.edu.cn

(Received 26 May 2010; accepted 1 June 2010; online 9 June 2010)

In the title compound, C22H21N, the pyridine ring adopts a distorted boat conformation, while the adjacent pyran ring adopts a chair conformation; the heterocyclic rings make a dihedral angle of 40.1 (2)° with each other.

Related literature

For the biological properties of pyran­oquinoline derivatives, see: Faber et al. (1984[Faber, K., Stueckler, H. & Kappe, T. (1984). J. Heterocycl. Chem. 21, 1177-1178.]); Johnson et al. (1989[Johnson, J. V., Rauckman, S., Baccanari, P. D. & Roth, B. (1989). J. Med. Chem. 32, 1942-1949.]); Schiemann et al. (2007[Schiemann, K., Emde, U., Schlueter, T., Saal, C. & Maiwald, M. (2007). PCT Int. Appl. WO, 2007147480, A2.]); Yamada et al. (1992[Yamada, N., Kadowaki, S., Takahashi, K. & Umezu, K. (1992). Biochem. Pharmacol. 44, 1211-1213.]). Zhao & Teng (2008[Zhao, L.-L. & Teng, D. (2008). Acta Cryst. E64, o1772-o1773.]). For related structures, see: Ramesh et al. (2008[Ramesh, P., Subbiahpandi, A., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o1891.]); Zhao & Teng (2008[Zhao, L.-L. & Teng, D. (2008). Acta Cryst. E64, o1772-o1773.]); Bai et al. (2009[Bai, M.-S., Chen, Y.-Y., Niu, D.-L. & Peng, L. (2009). Acta Cryst. E65, o799.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21NO

  • Mr = 315.40

  • Monoclinic, P 21 /c

  • a = 8.1106 (2) Å

  • b = 10.9560 (2) Å

  • c = 18.5020 (3) Å

  • β = 93.552 (1)°

  • V = 1640.92 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.50 × 0.33 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • 11135 measured reflections

  • 2956 independent reflections

  • 2303 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.140

  • S = 1.03

  • 2956 reflections

  • 221 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of pyranoquinoline derivatives has been the focus of great interest, because it was reported that its derivatives possessed a broad spectrum of biological properties. Some of these activities include psychotropic activity (Yamada et al., 1992), anti-allergenic activity (Faber et al., 1984), and anti-inflammatory (Johnson et al., 1989). They are also used for the treatment of proliferative diseases, such as cancer (Schiemann et al., 2007). The title compound may be used as a new precursor for obtaining bioactive molecules. We report here the crystal structure of the title compound, (I).

In the crystal structure of (I), the pyridine ring of the pyranoquinoline moiety is slightly distorted and adopts a distorted boat conformation (Fig. 1). The atoms C1 and C2 deviate from the basal plane defined by the atoms C3—C5/N1 by 0.253 (3) and -0.495 (3) Å, respectively. This conformation is similar to that found in other hydropyridine derivatives (Ramesh et al. 2008; Zhao & Teng, 2008; Bai et al., 2009). In the adjacent pyran ring, the atoms C2, C3, C14 and C15 are coplanar, while the atoms O1 and C16 deviate from the plane by 0.659 (3) and -0.623 (3) Å, respectively. These data indicate that the pyran ring adopts a chair confirmation. The basal plane of the pyridine ring nearly parallel to the naphthalene ring C4—C13, forming a dihedral angle of 2.7 (1)°, and makes a dihedral angle of 82.2 (1)° to benzene ring. Two heterocyclic rings make a dihedral angle of 40.1 (1)°.

Related literature top

For the biological properties of pyranoquinoline derivatives, see: Faber et al. (1984); Johnson et al. (1989); Schiemann et al. (2007); Yamada et al. (1992). Zhao & Teng (2008). For related structures, see: Ramesh et al. (2008); Zhao & Teng (2008); Bai et al. (2009).

Experimental top

The title compound, (I), was prepared by the reaction of benzaldehyde (0.212 g, 2 mmol), naphthalen-2-amine (0.286 g, 2.0 mmol), 3,4-dihydro-2H-pyran (0.252 g, 3.0 mmol), I2 (0.026 g, 0.1 mmol) and THF (10 ml) for 14 h (yield 86%, mp. 477–478 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a dimethylformamide (dmf) solution.

Refinement top

The H atoms were calculated geometrically and refined as riding, with C—H = 0.93–0.98 Å, except for H1 which was located from a difference map and its distance was restricted at 0.85 by DFIX command, with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure drawing for (I) showing 30% probability of displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecular packing diagram of (I).
5-Phenyl-3,4,4a,5,6,12c-hexahydro-2H-benzo[f]pyrano[3,2- c]quinoline top
Crystal data top
C22H21NOF(000) = 672
Mr = 315.40Dx = 1.277 Mg m3
Monoclinic, P21/cMelting point = 477–478 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.1106 (2) ÅCell parameters from 3365 reflections
b = 10.9560 (2) Åθ = 2.5–26.4°
c = 18.5020 (3) ŵ = 0.08 mm1
β = 93.552 (1)°T = 296 K
V = 1640.92 (6) Å3Block, colourless
Z = 40.50 × 0.33 × 0.10 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2303 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.2°, θmin = 2.2°
ϕ & ω scansh = 99
11135 measured reflectionsk = 1312
2956 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.4581P]
where P = (Fo2 + 2Fc2)/3
2956 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C22H21NOV = 1640.92 (6) Å3
Mr = 315.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1106 (2) ŵ = 0.08 mm1
b = 10.9560 (2) ÅT = 296 K
c = 18.5020 (3) Å0.50 × 0.33 × 0.10 mm
β = 93.552 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
2303 reflections with I > 2σ(I)
11135 measured reflectionsRint = 0.023
2956 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.140H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
2956 reflectionsΔρmin = 0.21 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.3714 (2)1.07478 (15)0.36093 (9)0.0408 (4)
N10.61481 (19)0.95714 (14)0.39789 (10)0.0537 (4)
O10.18206 (15)0.97459 (12)0.43549 (7)0.0562 (4)
C130.3017 (2)1.18875 (15)0.33707 (9)0.0414 (4)
C50.5404 (2)1.06466 (16)0.37471 (10)0.0439 (4)
C30.2648 (2)0.96399 (16)0.36947 (10)0.0442 (4)
H3A0.18080.96250.32910.053*
C80.4069 (2)1.29013 (16)0.32593 (9)0.0452 (4)
C60.6433 (2)1.16641 (18)0.36261 (11)0.0544 (5)
H6A0.75711.15890.37110.065*
C10.5156 (2)0.85413 (16)0.42038 (10)0.0470 (4)
H1A0.47980.87050.46910.056*
C20.3629 (2)0.84524 (16)0.36796 (10)0.0467 (4)
H2A0.40120.83590.31910.056*
C70.5791 (2)1.27409 (18)0.33898 (11)0.0529 (5)
H7A0.64971.33900.33110.064*
C170.6191 (2)0.73967 (16)0.42288 (9)0.0439 (4)
C100.1721 (3)1.41656 (19)0.29126 (12)0.0623 (6)
H10A0.12811.49140.27610.075*
C220.6980 (2)0.69912 (17)0.36296 (10)0.0522 (5)
H22A0.68870.74430.32030.063*
C90.3376 (3)1.40304 (17)0.30283 (10)0.0552 (5)
H9A0.40681.46900.29550.066*
C110.0673 (3)1.31761 (19)0.30220 (12)0.0614 (5)
H11A0.04621.32700.29400.074*
C120.1299 (2)1.20753 (17)0.32474 (10)0.0515 (5)
H12A0.05791.14330.33220.062*
C160.2505 (3)0.73714 (18)0.38181 (12)0.0603 (5)
H16A0.17300.72600.34030.072*
H16B0.31680.66370.38740.072*
C180.6379 (3)0.6707 (2)0.48508 (11)0.0630 (6)
H18A0.58690.69540.52630.076*
C210.7894 (3)0.59365 (18)0.36538 (11)0.0581 (5)
H21A0.83990.56760.32430.070*
C200.8067 (3)0.52664 (18)0.42770 (12)0.0604 (5)
H20A0.86930.45550.42930.073*
C150.1569 (3)0.7550 (2)0.44793 (14)0.0697 (6)
H15A0.23250.75290.49070.084*
H15B0.07730.68960.45170.084*
C140.0693 (3)0.8750 (2)0.44381 (14)0.0692 (6)
H14A0.01200.87420.40310.083*
H14B0.01150.88710.48760.083*
C190.7316 (3)0.5649 (2)0.48709 (12)0.0710 (6)
H19A0.74310.51970.52960.085*
H10.70870.9650.42040.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0409 (9)0.0403 (9)0.0416 (9)0.0009 (7)0.0053 (7)0.0061 (7)
N10.0389 (8)0.0454 (9)0.0761 (11)0.0008 (7)0.0021 (8)0.0027 (8)
O10.0504 (7)0.0515 (8)0.0685 (9)0.0046 (6)0.0189 (6)0.0062 (6)
C130.0459 (9)0.0410 (9)0.0376 (9)0.0006 (7)0.0059 (7)0.0056 (7)
C50.0405 (9)0.0423 (9)0.0492 (10)0.0001 (7)0.0049 (7)0.0071 (8)
C30.0398 (9)0.0440 (10)0.0488 (10)0.0012 (7)0.0026 (7)0.0022 (8)
C80.0532 (10)0.0440 (10)0.0390 (9)0.0010 (8)0.0074 (8)0.0064 (7)
C60.0398 (9)0.0557 (12)0.0678 (13)0.0048 (9)0.0050 (9)0.0073 (9)
C10.0455 (9)0.0462 (10)0.0496 (10)0.0020 (8)0.0038 (8)0.0062 (8)
C20.0476 (10)0.0435 (10)0.0489 (10)0.0003 (8)0.0019 (8)0.0057 (8)
C70.0537 (11)0.0472 (11)0.0589 (12)0.0109 (9)0.0112 (9)0.0048 (9)
C170.0430 (9)0.0433 (10)0.0454 (10)0.0001 (7)0.0020 (7)0.0028 (8)
C100.0745 (14)0.0462 (11)0.0665 (13)0.0146 (10)0.0071 (11)0.0003 (9)
C220.0618 (11)0.0503 (11)0.0454 (11)0.0115 (9)0.0096 (9)0.0059 (8)
C90.0721 (13)0.0404 (10)0.0540 (11)0.0021 (9)0.0107 (10)0.0030 (8)
C110.0552 (11)0.0587 (13)0.0703 (14)0.0132 (10)0.0037 (10)0.0008 (10)
C120.0486 (10)0.0484 (11)0.0578 (12)0.0031 (8)0.0059 (8)0.0018 (9)
C160.0605 (12)0.0451 (11)0.0738 (14)0.0038 (9)0.0096 (10)0.0002 (10)
C180.0726 (13)0.0731 (14)0.0438 (11)0.0105 (11)0.0073 (9)0.0028 (10)
C210.0641 (12)0.0514 (11)0.0597 (12)0.0096 (10)0.0108 (10)0.0051 (9)
C200.0629 (12)0.0432 (11)0.0742 (14)0.0053 (9)0.0028 (10)0.0043 (10)
C150.0634 (13)0.0569 (13)0.0885 (17)0.0110 (10)0.0021 (12)0.0077 (12)
C140.0556 (12)0.0630 (13)0.0909 (17)0.0118 (10)0.0195 (11)0.0038 (12)
C190.0862 (16)0.0659 (14)0.0603 (14)0.0146 (12)0.0002 (12)0.0210 (11)
Geometric parameters (Å, º) top
C4—C51.383 (2)C10—C91.355 (3)
C4—C131.429 (2)C10—C111.400 (3)
C4—C31.504 (2)C10—H10A0.9300
N1—C51.380 (2)C22—C211.372 (3)
N1—C11.461 (2)C22—H22A0.9300
N1—H10.850C9—H9A0.9300
O1—C31.434 (2)C11—C121.364 (3)
O1—C141.438 (2)C11—H11A0.9300
C13—C121.413 (2)C12—H12A0.9300
C13—C81.423 (2)C16—C151.492 (3)
C5—C61.418 (3)C16—H16A0.9700
C3—C21.526 (2)C16—H16B0.9700
C3—H3A0.9800C18—C191.385 (3)
C8—C91.414 (3)C18—H18A0.9300
C8—C71.414 (3)C21—C201.367 (3)
C6—C71.351 (3)C21—H21A0.9300
C6—H6A0.9300C20—C191.355 (3)
C1—C171.508 (2)C20—H20A0.9300
C1—C21.529 (3)C15—C141.494 (3)
C1—H1A0.9800C15—H15A0.9700
C2—C161.526 (3)C15—H15B0.9700
C2—H2A0.9800C14—H14A0.9700
C7—H7A0.9300C14—H14B0.9700
C17—C181.378 (3)C19—H19A0.9300
C17—C221.387 (2)
C5—C4—C13119.71 (15)C9—C10—H10A120.1
C5—C4—C3119.05 (15)C11—C10—H10A120.1
C13—C4—C3121.22 (15)C21—C22—C17121.24 (18)
C5—N1—C1120.68 (14)C21—C22—H22A119.4
C5—N1—H1115.1C17—C22—H22A119.4
C1—N1—H1115.7C10—C9—C8120.97 (19)
C3—O1—C14111.34 (15)C10—C9—H9A119.5
C12—C13—C8117.18 (16)C8—C9—H9A119.5
C12—C13—C4122.99 (16)C12—C11—C10120.76 (19)
C8—C13—C4119.82 (15)C12—C11—H11A119.6
N1—C5—C4122.34 (16)C10—C11—H11A119.6
N1—C5—C6118.03 (15)C11—C12—C13121.52 (19)
C4—C5—C6119.60 (16)C11—C12—H12A119.2
O1—C3—C4109.05 (13)C13—C12—H12A119.2
O1—C3—C2110.88 (14)C15—C16—C2112.03 (17)
C4—C3—C2112.49 (14)C15—C16—H16A109.2
O1—C3—H3A108.1C2—C16—H16A109.2
C4—C3—H3A108.1C15—C16—H16B109.2
C2—C3—H3A108.1C2—C16—H16B109.2
C9—C8—C7122.01 (17)H16A—C16—H16B107.9
C9—C8—C13119.76 (17)C17—C18—C19120.90 (19)
C7—C8—C13118.23 (16)C17—C18—H18A119.6
C7—C6—C5121.22 (17)C19—C18—H18A119.6
C7—C6—H6A119.4C20—C21—C22120.45 (19)
C5—C6—H6A119.4C20—C21—H21A119.8
N1—C1—C17109.61 (14)C22—C21—H21A119.8
N1—C1—C2107.90 (15)C19—C20—C21119.34 (19)
C17—C1—C2113.22 (14)C19—C20—H20A120.3
N1—C1—H1A108.7C21—C20—H20A120.3
C17—C1—H1A108.7C16—C15—C14109.77 (19)
C2—C1—H1A108.7C16—C15—H15A109.7
C16—C2—C3109.97 (15)C14—C15—H15A109.7
C16—C2—C1114.33 (16)C16—C15—H15B109.7
C3—C2—C1109.69 (14)C14—C15—H15B109.7
C16—C2—H2A107.5H15A—C15—H15B108.2
C3—C2—H2A107.5O1—C14—C15111.70 (17)
C1—C2—H2A107.5O1—C14—H14A109.3
C6—C7—C8121.39 (17)C15—C14—H14A109.3
C6—C7—H7A119.3O1—C14—H14B109.3
C8—C7—H7A119.3C15—C14—H14B109.3
C18—C17—C22117.36 (17)H14A—C14—H14B107.9
C18—C17—C1120.95 (17)C20—C19—C18120.71 (19)
C22—C17—C1121.68 (16)C20—C19—H19A119.6
C9—C10—C11119.80 (19)C18—C19—H19A119.6
C5—C4—C13—C12177.36 (16)N1—C1—C2—C359.10 (19)
C3—C4—C13—C124.4 (3)C17—C1—C2—C3179.41 (14)
C5—C4—C13—C81.5 (2)C5—C6—C7—C80.5 (3)
C3—C4—C13—C8176.73 (15)C9—C8—C7—C6178.50 (18)
C1—N1—C5—C410.1 (3)C13—C8—C7—C61.1 (3)
C1—N1—C5—C6171.94 (17)N1—C1—C17—C18124.28 (19)
C13—C4—C5—N1179.96 (16)C2—C1—C17—C18115.2 (2)
C3—C4—C5—N11.7 (3)N1—C1—C17—C2256.2 (2)
C13—C4—C5—C62.2 (3)C2—C1—C17—C2264.3 (2)
C3—C4—C5—C6176.16 (16)C18—C17—C22—C210.8 (3)
C14—O1—C3—C4175.92 (15)C1—C17—C22—C21178.78 (17)
C14—O1—C3—C259.69 (19)C11—C10—C9—C80.0 (3)
C5—C4—C3—O1104.13 (17)C7—C8—C9—C10179.42 (18)
C13—C4—C3—O177.58 (19)C13—C8—C9—C100.2 (3)
C5—C4—C3—C219.3 (2)C9—C10—C11—C120.3 (3)
C13—C4—C3—C2158.98 (15)C10—C11—C12—C130.7 (3)
C12—C13—C8—C90.6 (2)C8—C13—C12—C110.8 (3)
C4—C13—C8—C9179.55 (15)C4—C13—C12—C11179.77 (17)
C12—C13—C8—C7179.06 (16)C3—C2—C16—C1551.1 (2)
C4—C13—C8—C70.1 (2)C1—C2—C16—C1572.8 (2)
N1—C5—C6—C7179.13 (18)C22—C17—C18—C190.2 (3)
C4—C5—C6—C71.2 (3)C1—C17—C18—C19179.35 (19)
C5—N1—C1—C17164.33 (16)C17—C22—C21—C200.9 (3)
C5—N1—C1—C240.6 (2)C22—C21—C20—C190.5 (3)
O1—C3—C2—C1653.87 (19)C2—C16—C15—C1452.5 (2)
C4—C3—C2—C16176.28 (15)C3—O1—C14—C1561.8 (2)
O1—C3—C2—C172.68 (18)C16—C15—C14—O157.3 (3)
C4—C3—C2—C149.7 (2)C21—C20—C19—C180.1 (3)
N1—C1—C2—C16176.86 (15)C17—C18—C19—C200.2 (4)
C17—C1—C2—C1655.4 (2)

Experimental details

Crystal data
Chemical formulaC22H21NO
Mr315.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.1106 (2), 10.9560 (2), 18.5020 (3)
β (°) 93.552 (1)
V3)1640.92 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.33 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11135, 2956, 2303
Rint0.023
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.140, 1.03
No. of reflections2956
No. of parameters221
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We are grateful to the Natural Science Foundation (08KJD150019) and the Qing Lan Project (08QLT001) of the Jiangsu Education Committee for financial support.

References

First citationBai, M.-S., Chen, Y.-Y., Niu, D.-L. & Peng, L. (2009). Acta Cryst. E65, o799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaber, K., Stueckler, H. & Kappe, T. (1984). J. Heterocycl. Chem. 21, 1177–1178.  CrossRef CAS Google Scholar
First citationJohnson, J. V., Rauckman, S., Baccanari, P. D. & Roth, B. (1989). J. Med. Chem. 32, 1942–1949.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRamesh, P., Subbiahpandi, A., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o1891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchiemann, K., Emde, U., Schlueter, T., Saal, C. & Maiwald, M. (2007). PCT Int. Appl. WO, 2007147480, A2.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, N., Kadowaki, S., Takahashi, K. & Umezu, K. (1992). Biochem. Pharmacol. 44, 1211–1213.  CrossRef PubMed CAS Web of Science Google Scholar
First citationZhao, L.-L. & Teng, D. (2008). Acta Cryst. E64, o1772–o1773.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds