organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-[4-(Di­methyl­amino)­benzyl­­idene]-2,3-di­hydro-1H,9H-pyrrolo­[2,1-b]quinazolin-9-one

aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: burkhon@rambler.ru

(Received 18 May 2010; accepted 1 June 2010; online 5 June 2010)

The title compound, C20H19N3O, was obtained by condensation of 2,3-dihydro-1H,9H-pyrrolo­[2,1-b]quinazolin-9-one (alkaloid de­oxy­vasicinone, isolated from Peganum Harmala) with 4-(dimethyl­amino)­benzaldehyde in the presence of sodium methoxide. The 2,3-dihydro-1H,9H-pyrrolo­[2,1-b]quinazolin-9-one part of the mol­ecule is roughly planar (r.m.s. deviation = 0.0178 Å) and is essentially coplanar with the benzil­idene ring (r.m.s. deviation = 0.0080 Å), forming a dihedral angle of 5.0 (1)°. The crystal structure is stabilized by two aromatic ππ stacking inter­actions observed between the benzene rings of neighboring mol­ecules [centroid–centroid distance = 3.7555 (19) Å.

Related literature

For the synthesis of 2,3-dihydro-1H-pyrrolo­[2,1-b]quinazolin-9-one and the title compound, see: Shakhidoyatov et al. (1977[Shakhidoyatov, Kh. M., Yamankulov, M. Ya. & Kadyrov, Ch. Sh. (1977). Khim. Prir. Soedin. 4, 552-556.]); Elmuradov et al. (2009[Elmuradov, B. Zh., Khodzhaniyazov, Kh. U. & Shakhidoyatov, Kh. M. (2009). Republican scientific-practical conference. Actual problems of Chemistry, Samarkand, vol. 1, p. 32. ]); Shakhidoyatov & Kaysarov, (1998[Shakhidoyatov, Kh. M. & Kaysarov, I. (1998). Chem. Nat. Comp. 34, 59-61.]); Jahng et al. (2008[Jahng, K. C., Kim, S. I., Kim, D. H., Seo, C. S., Son, J. K., Lee, S. H., Lee, E. S. & Jahng, Y. (2008). Chem. Pharm. Bull. 56, 607-609.]). For the physiological activity of 2,3-dihydro-1H-pyrrolo­[2,1-b]quinazolin-9-one and its derivatives, see: Chatterjee & Ganguly, (1968[Chatterjee, A. & Ganguly, M. (1968). Phytochemistry, 7, 307-311.]); Al-Shamma et al. (1981[Al-Shamma, A., Drake, S., Flynn, D. L., Mitscher, L. A., Park, Y. H., Rao, G. S. R., Simpson, A., Swayze, J. K., Veysoglu, T. & Wu, S. T. S. (1981). J. Nat. Prod. 44, 745-747.]); Johne (1981[Johne, S. (1981). Pharmazie, 36, 583-596.]); Telezhenetskaya & Yunusov, (1977[Telezhenetskaya, M. V. & Yunusov, S. Yu. (1977). Khim. Prir. Soedin. 6, 731-743.]); Yunusov et al. (1978[Yunusov, S. Yu., Tulyaganov, N., Telezhenetskaya, M. V., Sadritdinov, F. & Khashimov, Kh. (1978). USSR Patent No. 605614; 'Anticholinesterase agent', Byull. Izobret., No. 17.]). For related structures, see: Barnes et al. (1985[Barnes, J. C., Low, J. N., Paton, J. D., Dunn, A. D. & Kinnear, K. I. (1985). Acta Cryst. C41, 282-284.]); Wu et al. (1997[Wu, X. Y., Qin, G. W., Cheung, K. K. & Cheng, K. F. (1997). Tetrahedron, 53, 13323-13328.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19N3O

  • Mr = 317.38

  • Monoclinic, P 21 /c

  • a = 8.8030 (18) Å

  • b = 16.415 (3) Å

  • c = 11.463 (2) Å

  • β = 105.05 (3)°

  • V = 1599.6 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 300 K

  • 0.60 × 0.20 × 0.15 mm

Data collection
  • Stoe Stadi-4 four-circle diffractometer

  • Absorption correction: ψ scan (X-RED; Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]). Tmin = 0.854, Tmax = 0.906

  • 2446 measured reflections

  • 2342 independent reflections

  • 1728 reflections with I > 2σ(I)

  • θmax = 60.0°

  • 3 standard reflections every 60 min intensity decay: 10.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.142

  • S = 1.13

  • 2342 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: STADI4 (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The derivatives of tricyclic quinazoline alkaloids possess different pharmacological activities (Chatterjee & Ganguly, 1968; Al-Shamma et al., 1981; Johne, 1981; Telezhenetskaya & Yunusov, 1977; Yunusov et al., 1978) and was found simples and convenient methods of a synthesis of these compounds (Shakhidoyatov et al., 1977; Shakhidoyatov & Kaysarov, 1998; Jahng et al., 2008).

Condensation of 2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one (alkaloid Deoxyvasicinone, isolated from Peganum Harmala) (Chatterjee & Ganguly, 1968) with 4-dimethylaminobenzaldehyde at 278 (1) K in presence of sodium methoxide (Elmuradov et al., 2009) leads to the formation of (E)-3-(4-dimethylamino)benzylidene-2,3-dihydro- 1H-pyrrolo[2,1-b]quinazolin-9-one (Figure 1).

The quinazoline part of molecule (C1/C2/C3/C3a/N4/C4a/C5/C6/C7/C8/C8a/C9/N10) is flat, r.m.s. deviation = 0.0178 Å, and benzilidene ring (C1'/C2'/C3'/C4'/C5'/C6'/C7') is also flat, r.m.s. deviation = 0.0080 Å, the angle between fragment planes is 5.0 (1)° (Figure 2). Torsion angle in fragment C3a–C3–C7'–C6' is 175.0 (5)° (Barnes et al., 1985; Wu et al., 1997), indicating the conjugation of π-electronic systems of pyrrolo(2,1-b)quinazolone and benzilidene rings. The sum of valent angles of all nitrogen atoms are close to 360° (Figure 3) which specifies sp2 hybridizations of nitrogen atoms. It specifies, that the lone electronic pair of nitrogen atoms participate in a conjugation with π electrons of aromatic ring. The crystal structure is stabilized by π-π interactions between the benzene rings of neighbor standing molecules with the distance Cg3···Cg4i = 3.7555 (19) Å [symmetry code: (i) -x, 1 - y, 1 - z; Cg3 and Cg4 are centroid of the C1'-C6' and C4a/C5-C8/C8a two benzene rings].

Related literature top

For the synthesis of 2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one and the title compound, see: Shakhidoyatov et al. (1977); Elmuradov et al. (2009); Shakhidoyatov & Kaysarov, (1998); Jahng et al. (2008). For the physiological activity of 2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one and its derivatives, see: Chatterjee & Ganguly, (1968); Al-Shamma et al. (1981); Johne (1981); Telezhenetskaya & Yunusov, (1977); Yunusov et al. (1978). For related structures, see: Barnes et al. (1985); Wu et al. (1997).

Experimental top

0.115 g sodium (5 mmole) was dissolved in 5 ml absolute methanol, and 0.186 g (1 mmole) of 2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one and 0.151 g (1 mmole) 4-dimethylamino-benzaldehyde were added (Figure 1). Reaction mixture was left at 278 (1) K for 3 weeks. The dropped out single crystals, suitable for X-ray analysis were filtered, flushed at first with alcohol, then water. 0.05 g (16%) of the title compound was obtained in the reaction, m.p. 514-516 K.

Refinement top

The 10% decay correction was applied by using the programm X-RED. The H atoms bonded to C atoms were placed geometrically (with C–H distances of 0.98 Å for CH; 0.97 Å for CH2; 0.96 Å for CH3; and 0.93 Å for Car) and included in the refinement in a riding motion approximation with Uiso(H)=1.2Ueq(C) [Uiso(H)=1.5Ueq(C) for methyl H atoms].

Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Reaction sequence.
[Figure 2] Fig. 2. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 3] Fig. 3. A section of molecular packing of the title compound.
(E)-3-[4-(Dimethylamino)benzylidene]-2,3-dihydro- 1H,9H-pyrrolo[2,1-b]quinazolin-9-one top
Crystal data top
C20H19N3OF(000) = 672
Mr = 317.38Dx = 1.318 Mg m3
Monoclinic, P21/cMelting point: 514(2) K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 8.8030 (18) ÅCell parameters from 12 reflections
b = 16.415 (3) Åθ = 10–20°
c = 11.463 (2) ŵ = 0.66 mm1
β = 105.05 (3)°T = 300 K
V = 1599.6 (6) Å3Prizmatic, light yellow
Z = 40.60 × 0.20 × 0.15 mm
Data collection top
Stoe Stadi-4 four-circle
diffractometer
1728 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 60.0°, θmin = 4.8°
Scan width (ω) = 1.32 – 1.56, scan ratio 2θ:ω = 0.00 I(Net) and sigma(I) calculated according to Blessing (1987)h = 99
Absorption correction: ψ scan
(X-RED; Stoe & Cie, 1997).
k = 018
Tmin = 0.854, Tmax = 0.906l = 012
2446 measured reflections3 standard reflections every 60 min
2342 independent reflections intensity decay: 10.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0446P)2 + 1.0639P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2342 reflectionsΔρmax = 0.16 e Å3
220 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (3)
Crystal data top
C20H19N3OV = 1599.6 (6) Å3
Mr = 317.38Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.8030 (18) ŵ = 0.66 mm1
b = 16.415 (3) ÅT = 300 K
c = 11.463 (2) Å0.60 × 0.20 × 0.15 mm
β = 105.05 (3)°
Data collection top
Stoe Stadi-4 four-circle
diffractometer
1728 reflections with I > 2σ(I)
Absorption correction: ψ scan
(X-RED; Stoe & Cie, 1997).
Rint = 0.000
Tmin = 0.854, Tmax = 0.906θmax = 60.0°
2446 measured reflections3 standard reflections every 60 min
2342 independent reflections intensity decay: 10.0%
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.13Δρmax = 0.16 e Å3
2342 reflectionsΔρmin = 0.18 e Å3
220 parameters
Special details top

Experimental. Empirical absorption correction using ψ Scan. Reflections used Mu * R = 0.00

H K L, θ, χ, I~min~/I~max~: -2 1 1 21.1 80.5 0.900

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1964 (3)0.57316 (13)0.07780 (19)0.0553 (7)
C10.0365 (4)0.48250 (18)0.2373 (3)0.0496 (9)
H1A0.08180.48800.16910.060*
H1B0.04320.44020.21970.060*
C20.1634 (4)0.46318 (18)0.3530 (3)0.0435 (8)
H2A0.14350.41070.38510.052*
H2B0.26630.46170.33700.052*
C30.1562 (3)0.52982 (17)0.4410 (3)0.0373 (7)
C3A0.0343 (3)0.58741 (17)0.3798 (2)0.0355 (7)
N40.0078 (3)0.65349 (14)0.4246 (2)0.0391 (6)
C4A0.1278 (3)0.69758 (17)0.3470 (3)0.0378 (7)
C50.1799 (4)0.76888 (18)0.3914 (3)0.0459 (8)
H5A0.13300.78560.47000.055*
C60.2995 (4)0.8144 (2)0.3201 (3)0.0495 (8)
H6A0.33270.86180.35030.059*
C70.3707 (4)0.78958 (19)0.2026 (3)0.0476 (8)
H7A0.45250.82010.15490.057*
C80.3213 (3)0.72058 (19)0.1568 (3)0.0452 (8)
H8A0.36900.70470.07800.054*
C8A0.1995 (3)0.67373 (17)0.2279 (3)0.0379 (7)
C90.1474 (3)0.59996 (18)0.1804 (3)0.0413 (7)
N100.0298 (3)0.55973 (14)0.2639 (2)0.0384 (6)
N1'0.7209 (3)0.34893 (18)0.8577 (2)0.0585 (8)
C1'0.3643 (3)0.49063 (17)0.6292 (2)0.0375 (7)
C2'0.4284 (4)0.42189 (18)0.5885 (3)0.0445 (8)
H2'A0.39020.40640.50810.053*
C3'0.5455 (4)0.37605 (19)0.6621 (3)0.0451 (8)
H3'A0.58470.33100.63030.054*
C4'0.6065 (3)0.39601 (18)0.7836 (3)0.0426 (8)
C5'0.5453 (4)0.46547 (19)0.8262 (3)0.0462 (8)
H5'A0.58390.48120.90640.055*
C6'0.4282 (3)0.51068 (18)0.7500 (3)0.0423 (8)
H6'A0.39040.55660.78080.051*
C7'0.2395 (3)0.54038 (17)0.5554 (3)0.0383 (7)
H7'A0.21350.58640.59340.046*
C8'0.7668 (5)0.3632 (3)0.9855 (3)0.0906 (15)
H8'A0.67530.36231.01640.136*
H8'B0.81710.41541.00150.136*
H8'C0.83860.32141.02430.136*
C9'0.7788 (4)0.2766 (2)0.8122 (3)0.0617 (10)
H9'A0.82560.29120.74820.093*
H9'B0.69320.23970.78180.093*
H9'C0.85620.25090.87620.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0632 (15)0.0588 (14)0.0371 (13)0.0057 (12)0.0006 (11)0.0039 (11)
C10.056 (2)0.0412 (18)0.0468 (19)0.0081 (16)0.0043 (16)0.0075 (15)
C20.0460 (18)0.0406 (18)0.0415 (17)0.0033 (15)0.0072 (15)0.0009 (14)
C30.0345 (16)0.0388 (16)0.0379 (16)0.0011 (13)0.0079 (13)0.0008 (13)
C3A0.0346 (16)0.0360 (16)0.0353 (15)0.0039 (13)0.0079 (13)0.0016 (13)
N40.0348 (14)0.0373 (14)0.0418 (14)0.0027 (11)0.0039 (11)0.0016 (11)
C4A0.0363 (17)0.0348 (16)0.0427 (17)0.0020 (13)0.0111 (14)0.0033 (13)
C50.0415 (18)0.0440 (19)0.0507 (19)0.0007 (15)0.0093 (15)0.0026 (15)
C60.0465 (19)0.0432 (18)0.059 (2)0.0066 (15)0.0149 (17)0.0039 (16)
C70.0395 (18)0.0464 (19)0.057 (2)0.0056 (15)0.0124 (15)0.0178 (16)
C80.0378 (17)0.0506 (19)0.0455 (18)0.0015 (15)0.0079 (14)0.0109 (15)
C8A0.0375 (17)0.0371 (17)0.0384 (16)0.0026 (13)0.0088 (13)0.0044 (13)
C90.0400 (18)0.0453 (18)0.0370 (17)0.0056 (14)0.0072 (14)0.0017 (14)
N100.0401 (14)0.0368 (14)0.0356 (13)0.0023 (11)0.0051 (11)0.0017 (11)
N1'0.0514 (17)0.0607 (19)0.0523 (17)0.0112 (15)0.0062 (14)0.0008 (14)
C1'0.0340 (16)0.0379 (17)0.0383 (16)0.0034 (13)0.0052 (13)0.0011 (13)
C2'0.0471 (19)0.0445 (18)0.0385 (17)0.0001 (15)0.0054 (14)0.0029 (14)
C3'0.0454 (19)0.0449 (18)0.0431 (18)0.0035 (15)0.0082 (15)0.0014 (15)
C4'0.0336 (17)0.0441 (18)0.0462 (18)0.0052 (14)0.0033 (14)0.0058 (15)
C5'0.0423 (18)0.0491 (19)0.0414 (18)0.0042 (16)0.0004 (15)0.0028 (15)
C6'0.0411 (17)0.0412 (17)0.0426 (17)0.0020 (14)0.0071 (14)0.0046 (14)
C7'0.0347 (16)0.0368 (16)0.0430 (17)0.0010 (13)0.0096 (14)0.0007 (13)
C8'0.092 (3)0.103 (3)0.056 (2)0.034 (3)0.017 (2)0.000 (2)
C9'0.048 (2)0.055 (2)0.075 (2)0.0088 (18)0.0019 (18)0.0083 (19)
Geometric parameters (Å, º) top
O1—C91.225 (3)C8A—C91.450 (4)
C1—N101.461 (4)C9—N101.382 (4)
C1—C21.529 (4)N1'—C4'1.375 (4)
C1—H1A0.9700N1'—C8'1.434 (4)
C1—H1B0.9700N1'—C9'1.442 (4)
C2—C31.500 (4)C1'—C6'1.392 (4)
C2—H2A0.9700C1'—C2'1.395 (4)
C2—H2B0.9700C1'—C7'1.452 (4)
C3—C7'1.338 (4)C2'—C3'1.374 (4)
C3—C3A1.465 (4)C2'—H2'A0.9300
C3A—N41.295 (3)C3'—C4'1.395 (4)
C3A—N101.378 (3)C3'—H3'A0.9300
N4—C4A1.394 (4)C4'—C5'1.402 (4)
C4A—C51.400 (4)C5'—C6'1.381 (4)
C4A—C8A1.403 (4)C5'—H5'A0.9300
C5—C61.374 (4)C6'—H6'A0.9300
C5—H5A0.9300C7'—H7'A0.9300
C6—C71.390 (4)C8'—H8'A0.9600
C6—H6A0.9300C8'—H8'B0.9600
C7—C81.366 (4)C8'—H8'C0.9600
C7—H7A0.9300C9'—H9'A0.9600
C8—C8A1.397 (4)C9'—H9'B0.9600
C8—H8A0.9300C9'—H9'C0.9600
N10—C1—C2103.9 (2)C3A—N10—C9123.8 (2)
N10—C1—H1A111.0C3A—N10—C1113.7 (2)
C2—C1—H1A111.0C9—N10—C1122.5 (2)
N10—C1—H1B111.0C4'—N1'—C8'120.5 (3)
C2—C1—H1B111.0C4'—N1'—C9'120.7 (3)
H1A—C1—H1B109.0C8'—N1'—C9'118.2 (3)
C3—C2—C1106.4 (2)C6'—C1'—C2'115.5 (3)
C3—C2—H2A110.4C6'—C1'—C7'119.7 (3)
C1—C2—H2A110.4C2'—C1'—C7'124.8 (3)
C3—C2—H2B110.4C3'—C2'—C1'122.8 (3)
C1—C2—H2B110.4C3'—C2'—H2'A118.6
H2A—C2—H2B108.6C1'—C2'—H2'A118.6
C7'—C3—C3A122.2 (3)C2'—C3'—C4'121.1 (3)
C7'—C3—C2130.2 (3)C2'—C3'—H3'A119.4
C3A—C3—C2107.6 (2)C4'—C3'—H3'A119.4
N4—C3A—N10124.8 (3)N1'—C4'—C3'121.0 (3)
N4—C3A—C3126.9 (3)N1'—C4'—C5'121.8 (3)
N10—C3A—C3108.3 (2)C3'—C4'—C5'117.1 (3)
C3A—N4—C4A115.4 (2)C6'—C5'—C4'120.5 (3)
N4—C4A—C5117.9 (3)C6'—C5'—H5'A119.8
N4—C4A—C8A123.4 (3)C4'—C5'—H5'A119.8
C5—C4A—C8A118.7 (3)C5'—C6'—C1'123.0 (3)
C6—C5—C4A120.7 (3)C5'—C6'—H6'A118.5
C6—C5—H5A119.6C1'—C6'—H6'A118.5
C4A—C5—H5A119.6C3—C7'—C1'129.6 (3)
C5—C6—C7120.0 (3)C3—C7'—H7'A115.2
C5—C6—H6A120.0C1'—C7'—H7'A115.2
C7—C6—H6A120.0N1'—C8'—H8'A109.5
C8—C7—C6120.4 (3)N1'—C8'—H8'B109.5
C8—C7—H7A119.8H8'A—C8'—H8'B109.5
C6—C7—H7A119.8N1'—C8'—H8'C109.5
C7—C8—C8A120.3 (3)H8'A—C8'—H8'C109.5
C7—C8—H8A119.8H8'B—C8'—H8'C109.5
C8A—C8—H8A119.8N1'—C9'—H9'A109.5
C8—C8A—C4A119.8 (3)N1'—C9'—H9'B109.5
C8—C8A—C9120.7 (3)H9'A—C9'—H9'B109.5
C4A—C8A—C9119.5 (3)N1'—C9'—H9'C109.5
O1—C9—N10120.5 (3)H9'A—C9'—H9'C109.5
O1—C9—C8A126.4 (3)H9'B—C9'—H9'C109.5
N10—C9—C8A113.1 (3)

Experimental details

Crystal data
Chemical formulaC20H19N3O
Mr317.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)300
a, b, c (Å)8.8030 (18), 16.415 (3), 11.463 (2)
β (°) 105.05 (3)
V3)1599.6 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.60 × 0.20 × 0.15
Data collection
DiffractometerStoe Stadi-4 four-circle
diffractometer
Absorption correctionψ scan
(X-RED; Stoe & Cie, 1997).
Tmin, Tmax0.854, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
2446, 2342, 1728
Rint0.000
θmax (°)60.0
(sin θ/λ)max1)0.562
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.142, 1.13
No. of reflections2342
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: STADI4 (Stoe & Cie, 1997), X-RED (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 and PLATON (Spek, 2009).

 

Acknowledgements

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA-F3-T047).

References

First citationAl-Shamma, A., Drake, S., Flynn, D. L., Mitscher, L. A., Park, Y. H., Rao, G. S. R., Simpson, A., Swayze, J. K., Veysoglu, T. & Wu, S. T. S. (1981). J. Nat. Prod. 44, 745–747.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBarnes, J. C., Low, J. N., Paton, J. D., Dunn, A. D. & Kinnear, K. I. (1985). Acta Cryst. C41, 282–284.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChatterjee, A. & Ganguly, M. (1968). Phytochemistry, 7, 307–311.  CrossRef CAS Web of Science Google Scholar
First citationElmuradov, B. Zh., Khodzhaniyazov, Kh. U. & Shakhidoyatov, Kh. M. (2009). Republican scientific–practical conference. Actual problems of Chemistry, Samarkand, vol. 1, p. 32.  Google Scholar
First citationJahng, K. C., Kim, S. I., Kim, D. H., Seo, C. S., Son, J. K., Lee, S. H., Lee, E. S. & Jahng, Y. (2008). Chem. Pharm. Bull. 56, 607–609.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohne, S. (1981). Pharmazie, 36, 583–596.  CAS PubMed Web of Science Google Scholar
First citationShakhidoyatov, Kh. M. & Kaysarov, I. (1998). Chem. Nat. Comp. 34, 59–61.  CrossRef CAS Google Scholar
First citationShakhidoyatov, Kh. M., Yamankulov, M. Ya. & Kadyrov, Ch. Sh. (1977). Khim. Prir. Soedin. 4, 552–556.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTelezhenetskaya, M. V. & Yunusov, S. Yu. (1977). Khim. Prir. Soedin. 6, 731–743.  Google Scholar
First citationWu, X. Y., Qin, G. W., Cheung, K. K. & Cheng, K. F. (1997). Tetrahedron, 53, 13323–13328.  CSD CrossRef CAS Web of Science Google Scholar
First citationYunusov, S. Yu., Tulyaganov, N., Telezhenetskaya, M. V., Sadritdinov, F. & Khashimov, Kh. (1978). USSR Patent No. 605614; 'Anticholinesterase agent', Byull. Izobret., No. 17.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds