organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Butyl-4-oxo-1,3-thia­zolidin-2-yl­­idene)benzamide

aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: zhr0103@zju.edu.cn

(Received 27 April 2010; accepted 30 May 2010; online 26 June 2010)

In the title compound, C14H16N2O2S, the thia­zolidine ring is planar [maximum atomic deviation = 0.0080 (14) Å] and twisted slightly with respect to the phenyl ring, making a dihedral angle of 4.46 (14)°. The butyl group displays an extended conformation, with a torsion angle of 169.4 (4)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules, forming supra­molecular chains.

Related literature

For the pharmaceutical applications of thia­zolidinones, see: Amin et al. (2008[Amin, K. M., Rahman, D. E. A. & Al-Eryani, Y. (2008). Bioorg. Med. Chem. 16, 5377-5388.]); Ramla et al. (2007[Ramla, M. M., Omarm, M. A., Tokuda, H. & El-Diwani, H. I. (2007). Bioorg. Med. Chem. 15, 6489-6496.]). For the synthesis, see: Peng et al. (2004[Peng, Y.-Q., Song, G.-H. & Huang, F.-F. (2004). J. Chem. Res. 10, 676-678.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O2S

  • Mr = 276.35

  • Monoclinic, P 21 /n

  • a = 5.4690 (1) Å

  • b = 30.5591 (8) Å

  • c = 8.6032 (2) Å

  • β = 99.895 (3)°

  • V = 1416.44 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 294 K

  • 0.50 × 0.14 × 0.07 mm

Data collection
  • Oxford Diffraction Nova A diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.895, Tmax = 0.984

  • 7446 measured reflections

  • 2530 independent reflections

  • 1987 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.129

  • S = 1.06

  • 2530 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.39 3.309 (3) 172
Symmetry code: (i) x-2, y, z-1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thiazolidinones have wide applications as anticonvulsant (Amin et al., 2008) and anti-neoplastic drugs (Ramla et al., 2007). We report here the structure of a new thiazolidinone derivative, I, Fig. 1.

The thiazolidinyl ring and phenyl ring are almost co-planar with the dihedral angle of 4.46 (14)°. The C11—C12—C13—C14 torsion angle is 169.4 (4)°, showing an extended conformation for the butyl substituent. The N1C8 bond distance of 1.291 (3) Å indicates a typical double bond. In the crystal structure, weak intermolecular C—H···O hydrogen bonds, Table 1, link the molecules to form one-dimensional supra-molecular chains, Fig. 2.

Related literature top

For the pharmaceutical applications of thiazolidinones, see: Amin et al. (2008); Ramla et al. (2007). For the synthesis, see: Peng et al. (2004).

Experimental top

The title compound was prepared according to the procedure reported by Peng et al. (2004). A 50 ml flask equipped with a dropping funnel was charged with NH4SCN (0.152 g, 2 mmol) and [bmim][PF6] (2 ml) and was cooled in an ice-water bath. Freshly distilled benzoyl chloride(0.284 g, 2 mmol) was added dropwise and stirred for a further 20 min (disappearance of the starting material was monitored by TLC). n-Butylamine (2 mmol) was then added to the same reaction vessel at room temperature and the mixture was stirred for 20 min more. On completion, ethyl chloroacetate (2.4 mmol) and anhydrous sodium acetate (0.196 g, 2.4 mmol) was added to the flask, and the mixture was heated at 80°C for 2-3 h. After consumption of N-benzoyl-N'-butylthiourea as indicated by by TLC monitoring, the salts were firstly leached with water (5 ml×2), and the crude product was collected by filtration. Recrystallization from ethanol gave pure product as a yellow crystalline solid.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methine). The torsion angle of methyl group was refined to fit the electron density, with Uiso(H) = 1.5Uea(C). For the other H atoms, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell refinement: CrysAlis PRO (Oxford Diffraction, 2008); data reduction: CrysAlis PRO (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and OLEX2 (Dolomanov et al., 2009).; software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing for I viewed down the a axis.
N-(3-Butyl-4-oxo-1,3-thiazolidin-2-ylidene)benzamide top
Crystal data top
C14H16N2O2SF(000) = 584
Mr = 276.35Dx = 1.296 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3174 reflections
a = 5.4690 (1) Åθ = 2.8–25.0°
b = 30.5591 (8) ŵ = 0.23 mm1
c = 8.6032 (2) ÅT = 294 K
β = 99.895 (3)°Platelet, yellow
V = 1416.44 (6) Å30.50 × 0.14 × 0.07 mm
Z = 4
Data collection top
Oxford Diffraction Nova A
diffractometer
2530 independent reflections
Radiation source: fine-focus sealed tube1987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 25.1°, θmin = 1.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
h = 63
Tmin = 0.895, Tmax = 0.984k = 3636
7446 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.3856P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2530 reflectionsΔρmax = 0.20 e Å3
174 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0113 (18)
Crystal data top
C14H16N2O2SV = 1416.44 (6) Å3
Mr = 276.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.4690 (1) ŵ = 0.23 mm1
b = 30.5591 (8) ÅT = 294 K
c = 8.6032 (2) Å0.50 × 0.14 × 0.07 mm
β = 99.895 (3)°
Data collection top
Oxford Diffraction Nova A
diffractometer
2530 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
1987 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.984Rint = 0.026
7446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
2530 reflectionsΔρmin = 0.21 e Å3
174 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28923 (11)0.210301 (19)0.34733 (8)0.0680 (2)
N10.0399 (3)0.14912 (6)0.1466 (2)0.0568 (5)
N20.4097 (3)0.12988 (6)0.3021 (2)0.0604 (5)
O10.1307 (3)0.21815 (6)0.1475 (2)0.0846 (6)
O20.7761 (3)0.11970 (7)0.4680 (2)0.0903 (6)
C10.3441 (4)0.12483 (8)0.0946 (3)0.0675 (6)
H10.21200.10580.06370.081*
C20.5428 (5)0.11225 (10)0.2086 (3)0.0834 (8)
H20.54350.08460.25400.100*
C30.7382 (5)0.14015 (11)0.2550 (3)0.0850 (8)
H30.87110.13130.33100.102*
C40.7377 (4)0.18069 (11)0.1902 (3)0.0798 (8)
H40.86970.19960.22280.096*
C50.5429 (4)0.19391 (8)0.0765 (3)0.0674 (6)
H50.54410.22170.03220.081*
C60.3447 (4)0.16583 (7)0.0278 (2)0.0555 (5)
C70.1369 (4)0.18080 (7)0.0965 (3)0.0588 (5)
C80.2273 (4)0.16005 (7)0.2522 (2)0.0543 (5)
C90.6056 (4)0.14333 (9)0.4145 (3)0.0669 (6)
C100.5774 (4)0.19006 (9)0.4582 (3)0.0740 (7)
H10A0.71540.20710.43380.089*
H10B0.57560.19250.57040.089*
C110.4005 (4)0.08576 (8)0.2365 (3)0.0693 (6)
H11A0.56830.07460.24520.083*
H11B0.32890.08700.12530.083*
C120.2517 (5)0.05489 (9)0.3177 (4)0.0900 (8)
H12A0.08710.06690.31600.108*
H12B0.33030.05160.42710.108*
C130.2296 (8)0.01017 (11)0.2380 (6)0.1436 (17)
H13A0.18310.01460.12510.172*
H13B0.39210.00350.25640.172*
C140.0574 (10)0.01942 (15)0.2872 (8)0.194 (3)
H14A0.08780.02140.40020.291*
H14B0.07670.04780.24300.291*
H14C0.10840.00910.25150.291*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0674 (4)0.0599 (4)0.0716 (4)0.0109 (3)0.0022 (3)0.0083 (3)
N10.0544 (10)0.0541 (10)0.0564 (10)0.0011 (8)0.0061 (8)0.0013 (8)
N20.0529 (10)0.0640 (11)0.0592 (10)0.0002 (8)0.0045 (8)0.0004 (9)
O10.0866 (12)0.0620 (10)0.0931 (13)0.0110 (8)0.0190 (10)0.0116 (9)
O20.0606 (10)0.1150 (15)0.0852 (12)0.0086 (10)0.0155 (9)0.0012 (11)
C10.0633 (13)0.0679 (14)0.0656 (14)0.0014 (11)0.0054 (11)0.0005 (11)
C20.0786 (17)0.0852 (18)0.0781 (17)0.0140 (14)0.0104 (13)0.0076 (14)
C30.0620 (15)0.115 (2)0.0689 (16)0.0187 (15)0.0132 (12)0.0112 (16)
C40.0534 (13)0.102 (2)0.0792 (17)0.0026 (13)0.0040 (12)0.0219 (16)
C50.0577 (13)0.0705 (14)0.0714 (14)0.0035 (11)0.0035 (11)0.0101 (12)
C60.0495 (11)0.0596 (12)0.0548 (11)0.0026 (9)0.0021 (9)0.0075 (10)
C70.0584 (12)0.0539 (12)0.0606 (12)0.0001 (10)0.0001 (10)0.0009 (10)
C80.0534 (11)0.0540 (12)0.0531 (11)0.0059 (9)0.0027 (9)0.0013 (9)
C90.0506 (12)0.0865 (17)0.0590 (13)0.0085 (11)0.0035 (10)0.0037 (12)
C100.0615 (14)0.0884 (18)0.0669 (14)0.0221 (12)0.0039 (11)0.0040 (13)
C110.0608 (13)0.0674 (14)0.0751 (15)0.0091 (11)0.0013 (11)0.0030 (12)
C120.0860 (19)0.0689 (16)0.114 (2)0.0021 (14)0.0156 (17)0.0020 (16)
C130.144 (3)0.0650 (19)0.234 (5)0.012 (2)0.068 (3)0.017 (3)
C140.179 (5)0.108 (3)0.313 (8)0.038 (3)0.093 (5)0.040 (4)
Geometric parameters (Å, º) top
S1—C81.746 (2)C5—C61.390 (3)
S1—C101.805 (2)C5—H50.9300
N1—C81.291 (3)C6—C71.492 (3)
N1—C71.384 (3)C9—C101.491 (4)
N2—C81.372 (3)C10—H10A0.9700
N2—C91.377 (3)C10—H10B0.9700
N2—C111.459 (3)C11—C121.495 (4)
O1—C71.221 (3)C11—H11A0.9700
O2—C91.206 (3)C11—H11B0.9700
C1—C61.379 (3)C12—C131.525 (5)
C1—C21.387 (3)C12—H12A0.9700
C1—H10.9300C12—H12B0.9700
C2—C31.372 (4)C13—C141.421 (5)
C2—H20.9300C13—H13A0.9700
C3—C41.359 (4)C13—H13B0.9700
C3—H30.9300C14—H14A0.9600
C4—C51.377 (3)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C8—S1—C1091.59 (11)N2—C9—C10111.2 (2)
C8—N1—C7117.76 (19)C9—C10—S1108.30 (15)
C8—N2—C9117.08 (19)C9—C10—H10A110.0
C8—N2—C11121.66 (17)S1—C10—H10A110.0
C9—N2—C11121.24 (19)C9—C10—H10B110.0
C6—C1—C2119.3 (2)S1—C10—H10B110.0
C6—C1—H1120.4H10A—C10—H10B108.4
C2—C1—H1120.4N2—C11—C12112.8 (2)
C3—C2—C1120.7 (3)N2—C11—H11A109.0
C3—C2—H2119.7C12—C11—H11A109.0
C1—C2—H2119.7N2—C11—H11B109.0
C4—C3—C2120.0 (2)C12—C11—H11B109.0
C4—C3—H3120.0H11A—C11—H11B107.8
C2—C3—H3120.0C11—C12—C13111.3 (3)
C3—C4—C5120.4 (2)C11—C12—H12A109.4
C3—C4—H4119.8C13—C12—H12A109.4
C5—C4—H4119.8C11—C12—H12B109.4
C4—C5—C6120.1 (2)C13—C12—H12B109.4
C4—C5—H5120.0H12A—C12—H12B108.0
C6—C5—H5120.0C14—C13—C12116.2 (4)
C1—C6—C5119.5 (2)C14—C13—H13A108.2
C1—C6—C7121.44 (19)C12—C13—H13A108.2
C5—C6—C7119.0 (2)C14—C13—H13B108.2
O1—C7—N1124.6 (2)C12—C13—H13B108.2
O1—C7—C6121.0 (2)H13A—C13—H13B107.4
N1—C7—C6114.46 (19)C13—C14—H14A109.5
N1—C8—N2119.52 (19)C13—C14—H14B109.5
N1—C8—S1128.62 (17)H14A—C14—H14B109.5
N2—C8—S1111.86 (14)C13—C14—H14C109.5
O2—C9—N2123.1 (2)H14A—C14—H14C109.5
O2—C9—C10125.7 (2)H14B—C14—H14C109.5
C6—C1—C2—C30.1 (4)C11—N2—C8—N11.3 (3)
C1—C2—C3—C40.5 (4)C9—N2—C8—S10.2 (3)
C2—C3—C4—C50.7 (4)C11—N2—C8—S1178.67 (17)
C3—C4—C5—C60.3 (4)C10—S1—C8—N1179.2 (2)
C2—C1—C6—C50.5 (4)C10—S1—C8—N20.77 (18)
C2—C1—C6—C7179.3 (2)C8—N2—C9—O2179.6 (2)
C4—C5—C6—C10.3 (4)C11—N2—C9—O21.9 (4)
C4—C5—C6—C7179.5 (2)C8—N2—C9—C100.7 (3)
C8—N1—C7—O11.5 (4)C11—N2—C9—C10177.8 (2)
C8—N1—C7—C6178.87 (18)O2—C9—C10—S1179.1 (2)
C1—C6—C7—O1175.0 (2)N2—C9—C10—S11.2 (3)
C5—C6—C7—O15.1 (3)C8—S1—C10—C91.12 (19)
C1—C6—C7—N15.3 (3)C8—N2—C11—C1285.8 (3)
C5—C6—C7—N1174.51 (19)C9—N2—C11—C1295.8 (3)
C7—N1—C8—N2178.42 (19)N2—C11—C12—C13175.6 (3)
C7—N1—C8—S11.5 (3)C11—C12—C13—C14169.4 (4)
C9—N2—C8—N1179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.393.309 (3)172
Symmetry code: (i) x2, y, z1.

Experimental details

Crystal data
Chemical formulaC14H16N2O2S
Mr276.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)5.4690 (1), 30.5591 (8), 8.6032 (2)
β (°) 99.895 (3)
V3)1416.44 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.50 × 0.14 × 0.07
Data collection
DiffractometerOxford Diffraction Nova A
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
Tmin, Tmax0.895, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7446, 2530, 1987
Rint0.026
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 1.06
No. of reflections2530
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and OLEX2 (Dolomanov et al., 2009)., WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.393.309 (3)172
Symmetry code: (i) x2, y, z1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China for financial support (grant No. Y4080234).

References

First citationAmin, K. M., Rahman, D. E. A. & Al-Eryani, Y. (2008). Bioorg. Med. Chem. 16, 5377-5388.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPeng, Y.-Q., Song, G.-H. & Huang, F.-F. (2004). J. Chem. Res. 10, 676–678.  CrossRef Google Scholar
First citationRamla, M. M., Omarm, M. A., Tokuda, H. & El-Diwani, H. I. (2007). Bioorg. Med. Chem. 15, 6489–6496.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds