organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,2,2-Tri­fluoro­eth­yl)isoindoline-1,3-dione

aCollege of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: clshangzhou@yahoo.com.cn

(Received 12 May 2010; accepted 28 May 2010; online 23 June 2010)

In the title compound, C10H6F3NO2, the isoindole ring system is planar, the maximum atomic deviation being 0.012 (2) Å. The C—C bond of the trifluoro­ethyl group is twisted with respect to the isoindole ring by a dihedral angle of 62.58 (17)°. Weak inter­molecular C—H⋯O and C—H⋯F hydrogen bonding is present in the crystal structure.

Related literature

The title compound is a key inter­mediate in the synthesis of organic electro-luminescent materials, see: Han & Kay (2005[Han, K. J. & Kay, K. Y. (2005). J. Korean Chem. Soc. 49, 233-238.]). For the synthesis, see: Valkonen et al. (2007[Valkonen, A., Lahtinen, T. & Rissanen, K. (2007). Acta Cryst. E63, o472-o473.]); Barchin et al. (2002[Barchin, B. M., Cuadro, A. M. & Alvarez-Builla, J. (2002). Synlett, 2, 343-345.]). For a related structure, see: Valkonen et al. (2007[Valkonen, A., Lahtinen, T. & Rissanen, K. (2007). Acta Cryst. E63, o472-o473.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6F3NO2

  • Mr = 229.16

  • Monoclinic, P 21 /c

  • a = 5.047 (1) Å

  • b = 9.5370 (19) Å

  • c = 19.051 (4) Å

  • β = 95.20 (3)°

  • V = 913.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 113 K

  • 0.26 × 0.18 × 0.14 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.960, Tmax = 0.978

  • 7732 measured reflections

  • 1608 independent reflections

  • 1009 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.126

  • S = 0.97

  • 1608 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.52 3.462 (3) 174
C4—H4⋯O1ii 0.95 2.60 3.229 (3) 124
C9—H9B⋯O2iii 0.99 2.54 3.311 (3) 135
C3—H3⋯F3ii 0.95 2.62 3.556 (3) 168
C3—H3⋯O1ii 0.95 2.66 3.247 (3) 120
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

The title compound, I, is a key intermediate in the synthesis of organic electro-luminescent materials. The emission of light by organic molecules exposed to an electric field has been widely investigated in both an academic and industrial context. (Han & Kay, 2005).

The molecular structure of the title compound is illustrated in Fig. 1. The isoindole ring system is planar, the maximum atomic deviation being 0.012 (2) Å (for the N1 atom). The C9—C10 bond of the trifluoroethyl group is twisted with respect to the isoindole ring by a dihedral angle of 62.58 (17)°, which is similar to the angle 60.3 (5)° found in the related compound 2-(2-iodoethyl)isoindole-1,3-dione (Valkonen et al. 2007). Weak intermolecular C—H···O and and C—H···F hydrogen bonding is present in the crystal structure, Table 1, Fig. 2.

Related literature top

The title compound is a key intermediate in the synthesis of organic electro-luminescent materials, see: Han & Kay (2005). For the synthesis, see: Valkonen et al. (2007); Barchin et al. (2002). For a related structure, see: Valkonen et al. (2007).

Experimental top

An acetic acid solution of phthalic anhydride (14.8 g, 100 mmol) and 2,2,2-trifluoroethylamine (7.99 ml, 100 mmol) was refluxed overnight, and then filtered. The crude product was recrystallized from ethyl acetate.

Refinement top

H atoms were positioned geometrically and refined as riding with C—H = 0.95 or 0.99 Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2005).

Figures top
[Figure 1] Fig. 1. The molecule of I showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of I viewed down the a axis with hydrogen bonds drawn as dashed lines.
2-(2,2,2-Trifluoroethyl)isoindoline-1,3-dione top
Crystal data top
C10H6F3NO2F(000) = 464
Mr = 229.16Dx = 1.667 Mg m3
Monoclinic, P21/cMelting point: 400 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71075 Å
a = 5.047 (1) ÅCell parameters from 2545 reflections
b = 9.5370 (19) Åθ = 2.1–28.0°
c = 19.051 (4) ŵ = 0.16 mm1
β = 95.20 (3)°T = 113 K
V = 913.2 (3) Å3Prism, colorless
Z = 40.26 × 0.18 × 0.14 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1608 independent reflections
Radiation source: rotating anode1009 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.083
ω and ϕ scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 65
Tmin = 0.960, Tmax = 0.978k = 1111
7732 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0618P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
1608 reflectionsΔρmax = 0.43 e Å3
146 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.301 (15)
Crystal data top
C10H6F3NO2V = 913.2 (3) Å3
Mr = 229.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.047 (1) ŵ = 0.16 mm1
b = 9.5370 (19) ÅT = 113 K
c = 19.051 (4) Å0.26 × 0.18 × 0.14 mm
β = 95.20 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1608 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1009 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.978Rint = 0.083
7732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 0.97Δρmax = 0.43 e Å3
1608 reflectionsΔρmin = 0.50 e Å3
146 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.3850 (3)0.94405 (16)0.09725 (9)0.0441 (5)
F20.7282 (3)1.04965 (15)0.06326 (9)0.0434 (6)
F30.7509 (3)0.94503 (15)0.16352 (8)0.0424 (5)
O11.0018 (3)0.65493 (18)0.17852 (9)0.0311 (5)
O20.2715 (3)0.63673 (19)0.01945 (9)0.0327 (6)
N10.6488 (4)0.6796 (2)0.09384 (11)0.0258 (6)
C10.7960 (5)0.6112 (3)0.14966 (14)0.0259 (7)
C20.6475 (5)0.4813 (3)0.16200 (13)0.0249 (7)
C30.7001 (5)0.3752 (3)0.21083 (14)0.0288 (7)
H30.85080.37920.24450.035*
C40.5253 (5)0.2632 (3)0.20895 (14)0.0306 (7)
H40.55810.18840.24160.037*
C50.3044 (5)0.2576 (3)0.16073 (15)0.0316 (7)
H50.18700.17980.16110.038*
C60.2508 (5)0.3642 (3)0.11158 (14)0.0289 (7)
H60.09920.36090.07820.035*
C70.4270 (5)0.4746 (3)0.11336 (13)0.0258 (7)
C80.4261 (5)0.6019 (3)0.06811 (14)0.0264 (7)
C90.7342 (5)0.8059 (3)0.06062 (14)0.0296 (7)
H9A0.65930.80740.01080.036*
H9B0.93060.80550.06130.036*
C100.6488 (6)0.9351 (3)0.09660 (15)0.0326 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0356 (11)0.0349 (10)0.0619 (13)0.0086 (8)0.0059 (8)0.0084 (8)
F20.0571 (13)0.0238 (10)0.0492 (12)0.0014 (8)0.0039 (9)0.0066 (7)
F30.0596 (13)0.0298 (10)0.0362 (11)0.0038 (8)0.0051 (9)0.0039 (7)
O10.0285 (12)0.0274 (11)0.0361 (11)0.0003 (9)0.0034 (9)0.0039 (8)
O20.0298 (12)0.0350 (12)0.0321 (12)0.0042 (8)0.0040 (9)0.0001 (9)
N10.0227 (13)0.0211 (12)0.0329 (13)0.0022 (10)0.0022 (10)0.0009 (10)
C10.0249 (16)0.0237 (15)0.0288 (15)0.0043 (13)0.0003 (12)0.0047 (11)
C20.0213 (15)0.0247 (15)0.0287 (15)0.0059 (12)0.0015 (12)0.0037 (11)
C30.0277 (17)0.0281 (16)0.0305 (16)0.0069 (13)0.0012 (12)0.0020 (12)
C40.0331 (18)0.0248 (16)0.0347 (17)0.0052 (13)0.0081 (13)0.0022 (12)
C50.0283 (17)0.0250 (16)0.0423 (18)0.0009 (13)0.0073 (14)0.0057 (12)
C60.0261 (17)0.0277 (16)0.0327 (16)0.0018 (13)0.0018 (12)0.0072 (12)
C70.0245 (16)0.0232 (15)0.0303 (16)0.0038 (12)0.0053 (12)0.0040 (12)
C80.0230 (16)0.0255 (15)0.0305 (16)0.0057 (12)0.0011 (12)0.0051 (12)
C90.0302 (16)0.0237 (15)0.0347 (17)0.0021 (13)0.0018 (12)0.0027 (12)
C100.0340 (19)0.0238 (16)0.0389 (18)0.0009 (14)0.0022 (13)0.0032 (12)
Geometric parameters (Å, º) top
F1—C101.335 (3)C3—H30.9500
F2—C101.343 (3)C4—C51.380 (3)
F3—C101.334 (3)C4—H40.9500
O1—C11.205 (3)C5—C61.392 (4)
O2—C81.203 (3)C5—H50.9500
N1—C81.398 (3)C6—C71.376 (3)
N1—C11.402 (3)C6—H60.9500
N1—C91.445 (3)C7—C81.489 (4)
C1—C21.478 (4)C9—C101.492 (4)
C2—C31.384 (3)C9—H9A0.9900
C2—C71.383 (3)C9—H9B0.9900
C3—C41.384 (4)
C8—N1—C1111.9 (2)C5—C6—H6121.4
C8—N1—C9123.4 (2)C6—C7—C2122.0 (2)
C1—N1—C9124.2 (2)C6—C7—C8129.9 (2)
O1—C1—N1124.1 (2)C2—C7—C8108.1 (2)
O1—C1—C2130.3 (2)O2—C8—N1124.6 (2)
N1—C1—C2105.6 (2)O2—C8—C7129.7 (2)
C3—C2—C7120.7 (2)N1—C8—C7105.6 (2)
C3—C2—C1130.6 (2)N1—C9—C10112.2 (2)
C7—C2—C1108.7 (2)N1—C9—H9A109.2
C2—C3—C4117.7 (2)C10—C9—H9A109.2
C2—C3—H3121.2N1—C9—H9B109.2
C4—C3—H3121.2C10—C9—H9B109.2
C5—C4—C3121.4 (2)H9A—C9—H9B107.9
C5—C4—H4119.3F3—C10—F1106.6 (2)
C3—C4—H4119.3F3—C10—F2106.8 (2)
C4—C5—C6121.1 (2)F1—C10—F2107.0 (2)
C4—C5—H5119.5F3—C10—C9113.3 (2)
C6—C5—H5119.5F1—C10—C9112.8 (2)
C7—C6—C5117.1 (2)F2—C10—C9110.1 (2)
C7—C6—H6121.4
C8—N1—C1—O1176.9 (2)C1—C2—C7—C6179.5 (2)
C9—N1—C1—O14.5 (4)C3—C2—C7—C8179.4 (2)
C8—N1—C1—C22.3 (3)C1—C2—C7—C80.4 (3)
C9—N1—C1—C2174.7 (2)C1—N1—C8—O2178.4 (2)
O1—C1—C2—C31.4 (5)C9—N1—C8—O26.0 (4)
N1—C1—C2—C3179.5 (3)C1—N1—C8—C72.0 (3)
O1—C1—C2—C7177.6 (3)C9—N1—C8—C7174.5 (2)
N1—C1—C2—C71.6 (3)C6—C7—C8—O20.4 (5)
C7—C2—C3—C40.1 (4)C2—C7—C8—O2179.5 (3)
C1—C2—C3—C4178.7 (3)C6—C7—C8—N1179.1 (3)
C2—C3—C4—C50.7 (4)C2—C7—C8—N11.0 (3)
C3—C4—C5—C60.7 (4)C8—N1—C9—C10100.0 (3)
C4—C5—C6—C70.1 (4)C1—N1—C9—C1088.4 (3)
C5—C6—C7—C20.5 (4)N1—C9—C10—F361.7 (3)
C5—C6—C7—C8179.4 (3)N1—C9—C10—F159.5 (3)
C3—C2—C7—C60.5 (4)N1—C9—C10—F2178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.523.462 (3)174
C4—H4···O1ii0.952.603.229 (3)124
C9—H9B···O2iii0.992.543.311 (3)135
C3—H3···F3ii0.952.623.556 (3)168
C3—H3···O1ii0.952.663.247 (3)120
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H6F3NO2
Mr229.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)5.047 (1), 9.5370 (19), 19.051 (4)
β (°) 95.20 (3)
V3)913.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.26 × 0.18 × 0.14
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.960, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
7732, 1608, 1009
Rint0.083
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.126, 0.97
No. of reflections1608
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.50

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.523.462 (3)174
C4—H4···O1ii0.952.603.229 (3)124
C9—H9B···O2iii0.992.543.311 (3)135
C3—H3···F3ii0.952.623.556 (3)168
C3—H3···O1ii0.952.663.247 (3)120
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

This work was supported by the Major Research Program of Zhejiang Province (No. 2008 C02007–2) and the Zhejiang Provincial Natural Science Foundation of China (No. Y307128).

References

First citationBarchin, B. M., Cuadro, A. M. & Alvarez-Builla, J. (2002). Synlett, 2, 343–345.  CrossRef Google Scholar
First citationHan, K. J. & Kay, K. Y. (2005). J. Korean Chem. Soc. 49, 233–238.  CAS Google Scholar
First citationRigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValkonen, A., Lahtinen, T. & Rissanen, K. (2007). Acta Cryst. E63, o472–o473.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds