metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m778-m779

{N,N′-Bis[1-(2-pyrid­yl)ethyl­­idene]ethane-1,2-di­amine-κ4N,N′,N′′,N′′′}(thio­cyanato-κN)zinc(II) perchlorate

aDepartment of Chemistry, Dezhou University, Dezhou Shandong 253023, People's Republic of China
*Correspondence e-mail: wfm99999@126.com

(Received 6 June 2010; accepted 7 June 2010; online 16 June 2010)

In the title compound, [Zn(NCS)(C16H18N4)]ClO4, the ZnII atom is five-coordinated by four N atoms of the Schiff base ligand N,N′-bis­[1-(2-pyrid­yl)ethyl­idene]ethane-1,2-diamine in the basal plane, and by the N atom of a thio­cyanate ligand at the apical position, forming a distorted square-pyramidal geometry. The r.m.s. deviation from a plane through the four N atoms of the Schiff base is 0.015 (3) Å, and the deviation of the Ni atom from that plane is 0.591 (2) Å. Bond lengths are comparable with those observed in similar zinc(II) complexes with Schiff bases. The two methyl­ene C atoms of the ethane-1,2-diamine bridge of the Schiff base ligand are disordered over two sites with occupancies of 0.587 (3) and 0.413 (3).

Related literature

For background to Schiff base compounds and their applications, see: Ruck & Jacobsen (2002[Ruck, R. T. & Jacobsen, E. N. (2002). J. Am. Chem. Soc. 124, 2882-2883.]); Mukhopadhyay et al. (2003[Mukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439-8445.]); Polt et al. (2003[Polt, R., Kelly, B. D., Dangel, B. D., Tadikonda, U. B., Ross, R. E., Raitsimring, A. M. & Astashkin, A. V. (2003). Inorg. Chem. 42, 566-574.]); Mukherjee et al. (2001[Mukherjee, P. S., Dalai, S., Mostafa, G., Lu, T.-H., Rentschler, E. & Chaudhuri, N. R. (2001). New J. Chem. 25, 1203-1207.]). For complexes derived from N,N′-bis­(1-(pyridin-2-yl)ethyl­idene)ethane-1,2-diamine, see: Gourbatsis et al. (1998[Gourbatsis, S., Hadjiliadis, N., Perlepes, S. P., Garoufis, A. & Butler, I. S. (1998). Transition Met. Chem. 23, 599-604.]); Louloudi et al. (1999[Louloudi, M., Nastopoulos, V., Gourbatsis, S., Perlepes, S. P. & Hadjiliadis, N. (1999). Inorg. Chem. Commun. 2, 479-483.]); Karmakar et al. (2002[Karmakar, T. K., Chandra, S. K., Ribas, J., Mostafa, G., Lu, T. H. & Ghosh, B. K. (2002). Chem. Commun. pp. 2364-2365.]); Banerjee et al. (2004[Banerjee, S., Gangopadhyay, J., Lu, C.-Z., Chen, J.-T. & Ghosh, A. (2004). Eur. J. Inorg. Chem. pp. 2533-2541.]). For bond lengths in similar zinc(II) complexes with Schiff bases, see: Ghosh et al. (2006[Ghosh, R., Rahaman, S. H., Lin, C.-N., Lu, T.-H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104-3112.]); Chen et al. (2005[Chen, G., Bai, Z.-P. & Qu, S.-J. (2005). Acta Cryst. E61, m2483-m2484.]). For the synthesis of the Schiff base ligand, see: Gourbatsis et al. (1990[Gourbatsis, S., Perlepes, S. P., Hadjiliadis, N. & Kalkanis, G. (1990). Transition Met. Chem. 15, 300-308.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCS)(C16H18N4)]ClO4

  • Mr = 489.24

  • Monoclinic, P 21 /c

  • a = 8.685 (2) Å

  • b = 13.963 (3) Å

  • c = 17.374 (2) Å

  • β = 99.690 (3)°

  • V = 2076.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 298 K

  • 0.32 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.655, Tmax = 0.671

  • 16681 measured reflections

  • 4529 independent reflections

  • 2534 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.170

  • S = 1.02

  • 4529 reflections

  • 282 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N5 1.982 (5)
Zn1—N3 2.099 (4)
Zn1—N1 2.100 (4)
Zn1—N2 2.102 (4)
Zn1—N4 2.115 (4)
N5—Zn1—N3 109.08 (17)
N5—Zn1—N1 105.95 (16)
N3—Zn1—N1 141.17 (14)
N5—Zn1—N2 110.56 (19)
N3—Zn1—N2 75.37 (15)
N1—Zn1—N2 77.12 (15)
N5—Zn1—N4 101.91 (17)
N3—Zn1—N4 77.11 (14)
N1—Zn1—N4 111.48 (15)
N2—Zn1—N4 142.71 (17)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal complexes with Schiff bases have been known since 1840. The Schiff bases and their complexes have played an important role in the development of coordination chemistry, biological and material sciences (Ruck & Jacobsen, 2002; Mukhopadhyay et al., 2003; Polt et al., 2003; Mukherjee et al., 2001). Several complexes derived from N,N'-bis(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine have been reported (Gourbatsis et al., 1998; Louloudi et al., 1999; Karmakar et al., 2002; Banerjee et al., 2004). In this paper, the title new zinc(II) complex is reported.

The title compound consists of a mononuclear zinc(II) complex cation and a perchlorate anion, Fig. 1. The ZnII atom is five-coordinated by four N atoms of the Schiff base ligand N,N'-bis(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine, and by one N atom of a thiocyanate ligand, forming a square pyramidal geometry. The coordinate bond lengths (Table 1) are comparable to those observed in other similar zinc(II) complexes with Schiff bases (Ghosh et al., 2006; Chen et al., 2005).

Related literature top

For background to Schiff base compounds and their applications, see: Ruck & Jacobsen (2002); Mukhopadhyay et al. (2003); Polt et al. (2003); Mukherjee et al. (2001). For complexes derived from N,N'-bis(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine, see: Gourbatsis et al. (1998); Louloudi et al. (1999); Karmakar et al. (2002); Banerjee et al. (2004). For bond lengths in similar zinc(II) complexes with Schiff bases, see: Ghosh et al. (2006); Chen et al. (2005). For the synthesis of the Schiff base ligand, see: Gourbatsis et al. (1990).

Experimental top

The Schiff base ligand N,N'-bis(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine was synthesized according to the literature method (Gourbatsis et al., 1990). To a stirred methanol solution of the Schiff base ligand (1.0 mmol, 0.266 g) was added a methanol solution of zinc(II) perchlorate (1.0 mmol, 0.390 g) and ammonium thiocyanate (1.0 mmol, 0.076 g). The mixture was boiled under reflux for 2 h, then cooled to room temperature. Colourless block-like single crystals, suitable for X-ray diffraction, were formed after slow evaporation of the solution in air for a few days.

Refinement top

Hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(Cmethyl). The C8 and C9 atoms are disordered over two sites with occupancies of 0.587 (3) and 0.413 (3).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the major component of the disordered group is shown.
{N,N'-Bis[1-(2-pyridyl)ethylidene]ethane-1,2-diamine- κ4N,N',N'',N'''}(thiocyanato- κN)zinc(II) perchlorate top
Crystal data top
[Zn(NCS)(C16H18N4)]ClO4F(000) = 1000
Mr = 489.24Dx = 1.565 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2719 reflections
a = 8.685 (2) Åθ = 2.4–25.0°
b = 13.963 (3) ŵ = 1.45 mm1
c = 17.374 (2) ÅT = 298 K
β = 99.690 (3)°Block, colourless
V = 2076.9 (7) Å30.32 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4529 independent reflections
Radiation source: fine-focus sealed tube2534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scanθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.655, Tmax = 0.671k = 1716
16681 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0792P)2 + 0.7526P]
where P = (Fo2 + 2Fc2)/3
4529 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.50 e Å3
48 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Zn(NCS)(C16H18N4)]ClO4V = 2076.9 (7) Å3
Mr = 489.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.685 (2) ŵ = 1.45 mm1
b = 13.963 (3) ÅT = 298 K
c = 17.374 (2) Å0.32 × 0.30 × 0.30 mm
β = 99.690 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4529 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2534 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.671Rint = 0.056
16681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05648 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.02Δρmax = 0.50 e Å3
4529 reflectionsΔρmin = 0.66 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.40268 (7)0.18336 (3)0.23821 (3)0.0532 (2)
Cl10.13446 (17)0.32198 (10)0.93392 (9)0.0761 (4)
S10.80304 (19)0.18105 (12)0.08648 (10)0.0888 (5)
O10.1863 (9)0.2376 (4)0.9693 (3)0.170 (3)
O20.2281 (6)0.3965 (4)0.9651 (3)0.145 (2)
O30.1346 (6)0.3155 (3)0.8524 (2)0.0975 (14)
O40.0172 (5)0.3397 (4)0.9480 (3)0.1246 (19)
N10.2700 (4)0.3093 (2)0.2175 (2)0.0516 (9)
N40.2661 (4)0.0604 (3)0.2040 (2)0.0547 (10)
N50.5483 (6)0.1840 (3)0.1618 (3)0.0725 (13)
C10.1666 (6)0.3311 (4)0.1535 (3)0.0640 (13)
H10.14350.28530.11440.077*
C20.0928 (6)0.4194 (4)0.1434 (3)0.0724 (15)
H20.02340.43280.09780.087*
C30.1231 (7)0.4857 (4)0.2009 (4)0.0762 (16)
H30.07280.54470.19590.091*
C40.2296 (6)0.4645 (3)0.2672 (3)0.0673 (14)
H40.25310.50970.30670.081*
C50.3015 (6)0.3754 (3)0.2744 (3)0.0524 (11)
C60.4210 (6)0.3474 (3)0.3435 (3)0.0608 (13)
C70.4484 (8)0.4109 (4)0.4138 (3)0.0881 (19)
H7A0.35140.42160.43200.132*
H7B0.49020.47100.40030.132*
H7C0.52120.38080.45430.132*
N20.4901 (5)0.2687 (3)0.3355 (3)0.0713 (12)0.59 (3)
N30.4830 (4)0.0850 (3)0.3273 (2)0.0537 (10)0.59 (3)
C80.573 (2)0.2217 (8)0.4079 (7)0.076 (4)0.59 (3)
H8A0.50770.22310.44810.092*0.59 (3)
H8B0.66910.25570.42720.092*0.59 (3)
C90.6085 (18)0.1192 (11)0.3889 (10)0.073 (6)0.59 (3)
H9A0.70830.11590.37090.088*0.59 (3)
H9B0.61410.07950.43510.088*0.59 (3)
N2'0.4901 (5)0.2687 (3)0.3355 (3)0.0713 (12)0.41 (3)
N3'0.4830 (4)0.0850 (3)0.3273 (2)0.0537 (10)0.41 (3)
C8'0.6313 (16)0.2226 (10)0.3782 (13)0.058 (5)0.41 (3)
H8'A0.67390.25870.42470.070*0.41 (3)
H8'B0.71090.21580.34560.070*0.41 (3)
C9'0.571 (3)0.1262 (15)0.3990 (8)0.058 (6)0.41 (3)
H9'A0.65700.08460.42010.070*0.41 (3)
H9'B0.50350.13350.43790.070*0.41 (3)
C100.4124 (6)0.0058 (3)0.3271 (3)0.0531 (12)
C110.4348 (8)0.0665 (4)0.3924 (3)0.0878 (19)
H11A0.52510.04970.42990.132*
H11B0.44930.12900.37160.132*
H11C0.34420.06700.41740.132*
C120.2956 (5)0.0134 (3)0.2555 (3)0.0518 (11)
C130.2222 (6)0.1010 (4)0.2399 (3)0.0714 (15)
H130.24240.15090.27560.086*
C140.1198 (7)0.1136 (4)0.1718 (4)0.089 (2)
H140.06770.17160.16140.107*
C150.0947 (7)0.0406 (5)0.1193 (4)0.093 (2)
H150.02890.04910.07170.112*
C160.1684 (6)0.0465 (4)0.1376 (3)0.0775 (16)
H160.14870.09680.10220.093*
C170.6548 (7)0.1821 (3)0.1302 (3)0.0544 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0591 (4)0.0415 (3)0.0582 (4)0.0002 (3)0.0079 (3)0.0004 (2)
Cl10.0691 (9)0.0799 (10)0.0767 (9)0.0045 (8)0.0053 (7)0.0098 (8)
S10.0678 (10)0.1090 (13)0.0936 (12)0.0072 (9)0.0252 (9)0.0140 (9)
O10.247 (6)0.129 (4)0.128 (4)0.090 (4)0.019 (4)0.038 (4)
O20.128 (4)0.170 (5)0.139 (4)0.084 (4)0.031 (3)0.071 (4)
O30.117 (3)0.115 (3)0.063 (2)0.004 (3)0.023 (2)0.015 (2)
O40.054 (3)0.207 (6)0.119 (4)0.000 (3)0.031 (3)0.013 (3)
N10.058 (2)0.045 (2)0.052 (2)0.0013 (18)0.0111 (18)0.0031 (17)
N40.050 (2)0.050 (2)0.062 (2)0.0005 (18)0.0044 (19)0.0043 (19)
N50.088 (3)0.055 (3)0.080 (3)0.003 (2)0.032 (3)0.009 (2)
C10.072 (3)0.062 (3)0.057 (3)0.003 (3)0.009 (3)0.001 (2)
C20.077 (4)0.062 (3)0.077 (4)0.018 (3)0.008 (3)0.017 (3)
C30.085 (4)0.058 (3)0.088 (4)0.022 (3)0.017 (3)0.013 (3)
C40.076 (4)0.043 (3)0.086 (4)0.001 (3)0.024 (3)0.005 (3)
C50.057 (3)0.045 (3)0.058 (3)0.009 (2)0.018 (2)0.001 (2)
C60.068 (3)0.043 (3)0.069 (3)0.012 (2)0.002 (3)0.001 (2)
C70.115 (5)0.061 (3)0.079 (4)0.008 (3)0.009 (3)0.017 (3)
N20.064 (3)0.053 (3)0.088 (3)0.001 (2)0.015 (2)0.004 (2)
N30.055 (2)0.049 (2)0.055 (2)0.0005 (19)0.0049 (18)0.0021 (18)
C80.073 (8)0.071 (6)0.080 (7)0.002 (5)0.002 (6)0.008 (5)
C90.080 (9)0.063 (8)0.071 (8)0.004 (6)0.003 (6)0.007 (5)
N2'0.064 (3)0.053 (3)0.088 (3)0.001 (2)0.015 (2)0.004 (2)
N3'0.055 (2)0.049 (2)0.055 (2)0.0005 (19)0.0049 (18)0.0021 (18)
C8'0.044 (7)0.058 (7)0.069 (8)0.001 (6)0.001 (6)0.010 (6)
C9'0.068 (9)0.051 (9)0.051 (8)0.005 (7)0.003 (7)0.004 (6)
C100.065 (3)0.039 (2)0.057 (3)0.008 (2)0.017 (2)0.000 (2)
C110.129 (6)0.055 (3)0.076 (4)0.006 (3)0.008 (4)0.009 (3)
C120.048 (3)0.043 (3)0.068 (3)0.004 (2)0.020 (2)0.007 (2)
C130.065 (4)0.050 (3)0.098 (4)0.007 (3)0.013 (3)0.006 (3)
C140.076 (4)0.058 (4)0.129 (6)0.015 (3)0.001 (4)0.021 (4)
C150.077 (4)0.085 (5)0.104 (5)0.011 (4)0.023 (4)0.023 (4)
C160.071 (4)0.069 (4)0.084 (4)0.001 (3)0.011 (3)0.004 (3)
C170.065 (3)0.038 (2)0.058 (3)0.001 (2)0.002 (3)0.007 (2)
Geometric parameters (Å, º) top
Zn1—N51.982 (5)C7—H7C0.9600
Zn1—N32.099 (4)N2—C81.492 (8)
Zn1—N12.100 (4)N3—C101.264 (5)
Zn1—N22.102 (4)N3—C91.472 (8)
Zn1—N42.115 (4)C8—C91.513 (10)
Cl1—O11.370 (5)C8—H8A0.9700
Cl1—O21.374 (4)C8—H8B0.9700
Cl1—O41.401 (4)C9—H9A0.9700
Cl1—O31.419 (4)C9—H9B0.9700
S1—C171.601 (6)C8'—C9'1.512 (10)
N1—C11.340 (6)C8'—H8'A0.9700
N1—C51.347 (5)C8'—H8'B0.9700
N4—C161.327 (6)C9'—H9'A0.9700
N4—C121.359 (6)C9'—H9'B0.9700
N5—C171.153 (7)C10—C121.492 (6)
C1—C21.387 (7)C10—C111.508 (7)
C1—H10.9300C11—H11A0.9600
C2—C31.355 (7)C11—H11B0.9600
C2—H20.9300C11—H11C0.9600
C3—C41.382 (7)C12—C131.385 (6)
C3—H30.9300C13—C141.368 (8)
C4—C51.388 (6)C13—H130.9300
C4—H40.9300C14—C151.360 (8)
C5—C61.501 (7)C14—H140.9300
C6—N21.271 (6)C15—C161.387 (7)
C6—C71.495 (7)C15—H150.9300
C7—H7A0.9600C16—H160.9300
C7—H7B0.9600
N5—Zn1—N3109.08 (17)C6—N2—Zn1117.7 (3)
N5—Zn1—N1105.95 (16)C8—N2—Zn1119.2 (5)
N3—Zn1—N1141.17 (14)C10—N3—C9125.9 (9)
N5—Zn1—N2110.56 (19)C10—N3—Zn1118.0 (3)
N3—Zn1—N275.37 (15)C9—N3—Zn1115.9 (8)
N1—Zn1—N277.12 (15)N2—C8—C9108.5 (11)
N5—Zn1—N4101.91 (17)N2—C8—H8A110.0
N3—Zn1—N477.11 (14)C9—C8—H8A110.0
N1—Zn1—N4111.48 (15)N2—C8—H8B110.0
N2—Zn1—N4142.71 (17)C9—C8—H8B110.0
O1—Cl1—O2110.3 (5)H8A—C8—H8B108.4
O1—Cl1—O4108.8 (4)N3—C9—C8108.2 (9)
O2—Cl1—O4108.0 (3)N3—C9—H9A110.1
O1—Cl1—O3109.7 (3)C8—C9—H9A110.1
O2—Cl1—O3110.0 (3)N3—C9—H9B110.1
O4—Cl1—O3110.1 (3)C8—C9—H9B110.1
C1—N1—C5118.6 (4)H9A—C9—H9B108.4
C1—N1—Zn1127.1 (3)C9'—C8'—H8'A111.3
C5—N1—Zn1114.2 (3)C9'—C8'—H8'B111.3
C16—N4—C12118.9 (4)H8'A—C8'—H8'B109.2
C16—N4—Zn1127.5 (4)C8'—C9'—H9'A110.2
C12—N4—Zn1113.3 (3)C8'—C9'—H9'B110.2
C17—N5—Zn1166.6 (5)H9'A—C9'—H9'B108.5
N1—C1—C2122.5 (5)N3—C10—C12114.9 (4)
N1—C1—H1118.7N3—C10—C11125.6 (5)
C2—C1—H1118.7C12—C10—C11119.4 (4)
C3—C2—C1119.1 (5)C10—C11—H11A109.5
C3—C2—H2120.5C10—C11—H11B109.5
C1—C2—H2120.5H11A—C11—H11B109.5
C2—C3—C4119.2 (5)C10—C11—H11C109.5
C2—C3—H3120.4H11A—C11—H11C109.5
C4—C3—H3120.4H11B—C11—H11C109.5
C3—C4—C5119.7 (5)N4—C12—C13120.8 (4)
C3—C4—H4120.1N4—C12—C10116.0 (4)
C5—C4—H4120.1C13—C12—C10123.2 (4)
N1—C5—C4121.0 (5)C14—C13—C12119.6 (5)
N1—C5—C6115.9 (4)C14—C13—H13120.2
C4—C5—C6123.1 (5)C12—C13—H13120.2
N2—C6—C7126.1 (5)C15—C14—C13119.4 (5)
N2—C6—C5114.4 (4)C15—C14—H14120.3
C7—C6—C5119.5 (5)C13—C14—H14120.3
C6—C7—H7A109.5C14—C15—C16119.2 (5)
C6—C7—H7B109.5C14—C15—H15120.4
H7A—C7—H7B109.5C16—C15—H15120.4
C6—C7—H7C109.5N4—C16—C15122.0 (5)
H7A—C7—H7C109.5N4—C16—H16119.0
H7B—C7—H7C109.5C15—C16—H16119.0
C6—N2—C8117.1 (7)N5—C17—S1179.2 (5)

Experimental details

Crystal data
Chemical formula[Zn(NCS)(C16H18N4)]ClO4
Mr489.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.685 (2), 13.963 (3), 17.374 (2)
β (°) 99.690 (3)
V3)2076.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.32 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.655, 0.671
No. of measured, independent and
observed [I > 2σ(I)] reflections
16681, 4529, 2534
Rint0.056
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.170, 1.02
No. of reflections4529
No. of parameters282
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.66

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N51.982 (5)Zn1—N22.102 (4)
Zn1—N32.099 (4)Zn1—N42.115 (4)
Zn1—N12.100 (4)
N5—Zn1—N3109.08 (17)N1—Zn1—N277.12 (15)
N5—Zn1—N1105.95 (16)N5—Zn1—N4101.91 (17)
N3—Zn1—N1141.17 (14)N3—Zn1—N477.11 (14)
N5—Zn1—N2110.56 (19)N1—Zn1—N4111.48 (15)
N3—Zn1—N275.37 (15)N2—Zn1—N4142.71 (17)
 

Acknowledgements

This work was supported financially by Dezhou University, People's Republic of China.

References

First citationBanerjee, S., Gangopadhyay, J., Lu, C.-Z., Chen, J.-T. & Ghosh, A. (2004). Eur. J. Inorg. Chem. pp. 2533–2541.  CSD CrossRef Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, G., Bai, Z.-P. & Qu, S.-J. (2005). Acta Cryst. E61, m2483–m2484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhosh, R., Rahaman, S. H., Lin, C.-N., Lu, T.-H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112.  Web of Science CSD CrossRef CAS Google Scholar
First citationGourbatsis, S., Hadjiliadis, N., Perlepes, S. P., Garoufis, A. & Butler, I. S. (1998). Transition Met. Chem. 23, 599–604.  Web of Science CSD CrossRef CAS Google Scholar
First citationGourbatsis, S., Perlepes, S. P., Hadjiliadis, N. & Kalkanis, G. (1990). Transition Met. Chem. 15, 300–308.  CrossRef CAS Web of Science Google Scholar
First citationKarmakar, T. K., Chandra, S. K., Ribas, J., Mostafa, G., Lu, T. H. & Ghosh, B. K. (2002). Chem. Commun. pp. 2364–2365.  Web of Science CSD CrossRef Google Scholar
First citationLouloudi, M., Nastopoulos, V., Gourbatsis, S., Perlepes, S. P. & Hadjiliadis, N. (1999). Inorg. Chem. Commun. 2, 479–483.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, P. S., Dalai, S., Mostafa, G., Lu, T.-H., Rentschler, E. & Chaudhuri, N. R. (2001). New J. Chem. 25, 1203–1207.  CSD CrossRef CAS Google Scholar
First citationMukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439–8445.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPolt, R., Kelly, B. D., Dangel, B. D., Tadikonda, U. B., Ross, R. E., Raitsimring, A. M. & Astashkin, A. V. (2003). Inorg. Chem. 42, 566–574.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRuck, R. T. & Jacobsen, E. N. (2002). J. Am. Chem. Soc. 124, 2882–2883.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m778-m779
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds