organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[(1E,1′E)-2,2′-(2,5-Dibut­­oxy-1,4-phenyl­ene)bis­­(ethene-2,1-di­yl)]di­pyridine

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and Key Laboratory of Functional Inorganic Materials Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: jywu1957@163.com

(Received 30 March 2010; accepted 13 April 2010; online 30 June 2010)

The centrosymmetric title mol­ecule, C28H32N2O2, has a central benzene ring subsituted in the 1- and 4-positions by (ethene-2,1-di­yl)pyridine groups, and in the 2- and 5-positions by but­oxy groups. The whole mol­ecule is X-shaped and relatively flat, the dihedral angle between the pyridine and the central benzene ring being 11.29 (10)°. In the crystal, neighboring mol­ecules are linked by weak C—H⋯N inter­actions, forming a two-dimensional undulating network.

Related literature

For information on pyridine-based photo-refractive materials, see: Naumov et al. (2002[Naumov, P., Sekine, A., Uekusa, H. & Ohashi, Y. (2002). J. Am. Chem. Soc. 124, 8540-8541.]); Liu et al. (2008[Liu, H. J., Tao, X. T., Yang, J. X., Yan, Y. X., Ren, Y., Zhao, H. P., Xin, Q., Yu, W. T. & Jiang, M. H. (2008). Cryst. Growth Des. 8, 259-264.]).

[Scheme 1]

Experimental

Crystal data
  • C28H32N2O2

  • Mr = 428.56

  • Monoclinic, P 21 /c

  • a = 8.882 (5) Å

  • b = 13.892 (5) Å

  • c = 10.387 (5) Å

  • β = 107.392 (5)°

  • V = 1223.0 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.964, Tmax = 0.986

  • 8512 measured reflections

  • 2162 independent reflections

  • 1385 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.154

  • S = 1.03

  • 2162 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N1i 0.93 2.70 3.446 (3) 138
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2008[Brandenburg, K. & Putz, H. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyridine based materials have been investigated for their electrical and optical properties. The introduction of substituents in the 2- and 4-positions of pyridine represents a possible approach for designing pyridine-based photo-refractive materials (Naumov et al., 2002; Liu et al., 2008).

In the title molecule (Fig. 1), which is centrosymmetric, there are two pyridine rings and a central benzene ring. The dihedral angle between the pyridine and the central benzene ring is 11.29 (10) °.

In the crystal structure of the title compound there exist C5—H5···N1i interactions between neighboring molecules [see Fig. 2 and Table 1]. This leads to the formation of a two-dimensional network lieing parallel to the bc-plane.

Related literature top

For information on pyridine-based photo-refractive materials, see: Naumov et al. (2002); Liu et al. (2008).

Experimental top

The title compound was prepared by firstly placing t-BuOK (8.98 g, 0.080 mol) in a dry motar and milling it to give very small particles. Then 2,5-Dibutoxy-1,4-bis(triphenylphosphonium)benzene dischloride (8.45 g, 0.010 mol) and picolinaldehyde (4.28 g, 0.040 mol) were added. The mixture was then milled vigorously for about 10 min. After the reaction was completed (monitored by TLC), the mixture was dispersed in 50 ml of H2O. The solution was extracted three times with 50 ml dichloromethane. The dichloromethane solution was dried for 12 h and concentrated. The concentrated solution was passed over a silica gel column and eluted with peroleum ether/ethyl acetate (8:1). By slow evaporation of the solvent yellow block-like crystals were obtained in 75% yield.

Refinement top

The H-atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.2 for CH and CH2 H-atoms and = 1.5 for CH3 H-atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule.
[Figure 2] Fig. 2. A view of the intermolecular C-H···N interactions (dashed lines) in the crystal structure of the title compound.
2,2'-[(1E,1'E)-2,2'-(2,5-Dibutoxy-1,4-phenylene)bis(ethene- 2,1-diyl)]dipyridine top
Crystal data top
C28H32N2O2F(000) = 460
Mr = 428.56Dx = 1.164 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 1446 reflections
a = 8.882 (5) Åθ = 2.5–21.8°
b = 13.892 (5) ŵ = 0.07 mm1
c = 10.387 (5) ÅT = 298 K
β = 107.392 (5)°Block, yellow
V = 1223.0 (10) Å30.50 × 0.30 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2162 independent reflections
Radiation source: fine-focus sealed tube1385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.964, Tmax = 0.986k = 1616
8512 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0821P)2 + 0.0525P]
where P = (Fo2 + 2Fc2)/3
2162 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C28H32N2O2V = 1223.0 (10) Å3
Mr = 428.56Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.882 (5) ŵ = 0.07 mm1
b = 13.892 (5) ÅT = 298 K
c = 10.387 (5) Å0.50 × 0.30 × 0.20 mm
β = 107.392 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2162 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1385 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.986Rint = 0.040
8512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
2162 reflectionsΔρmin = 0.16 e Å3
146 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10160 (17)0.50961 (9)0.22161 (12)0.0589 (4)
C20.0431 (2)0.57863 (13)0.43825 (17)0.0477 (5)
H20.07250.63130.39600.057*
C10.0472 (2)0.50707 (13)0.36022 (17)0.0458 (5)
C50.2548 (2)0.72369 (13)0.61936 (18)0.0491 (5)
H50.23240.73100.52650.059*
C40.1898 (2)0.64922 (13)0.66286 (18)0.0487 (5)
H40.20830.64420.75560.058*
C60.3587 (2)0.79507 (14)0.70512 (19)0.0500 (5)
C30.0919 (2)0.57414 (13)0.57915 (17)0.0447 (5)
N10.3841 (2)0.78919 (14)0.83829 (17)0.0781 (6)
C70.4305 (3)0.86549 (15)0.6486 (2)0.0617 (6)
H70.41060.86890.55560.074*
C110.0751 (3)0.59382 (15)0.15295 (19)0.0620 (6)
H11A0.03590.59960.16010.074*
H11B0.10690.65070.19220.074*
C120.1717 (3)0.58404 (16)0.00746 (18)0.0639 (6)
H12A0.15030.52170.02530.077*
H12B0.28260.58570.00200.077*
C80.5312 (3)0.93013 (17)0.7318 (3)0.0770 (7)
H80.57970.97800.69570.092*
C100.4832 (3)0.8533 (2)0.9145 (2)0.0988 (10)
H100.50180.84981.00740.119*
C90.5588 (3)0.9232 (2)0.8671 (3)0.0907 (9)
H90.62770.96520.92580.109*
C130.1405 (4)0.6606 (2)0.0831 (2)0.0963 (9)
H13A0.03020.65820.07950.116*
H13B0.16030.72310.04990.116*
C140.2407 (4)0.6502 (2)0.2276 (2)0.0996 (10)
H14A0.22730.58680.25940.149*
H14B0.20920.69720.28220.149*
H14C0.34960.65990.23350.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0777 (10)0.0571 (9)0.0353 (8)0.0123 (7)0.0069 (7)0.0006 (6)
C20.0541 (12)0.0462 (10)0.0408 (11)0.0014 (9)0.0111 (9)0.0001 (8)
C10.0492 (11)0.0514 (11)0.0330 (10)0.0032 (9)0.0066 (9)0.0017 (8)
C50.0514 (12)0.0543 (12)0.0386 (11)0.0007 (9)0.0090 (9)0.0031 (9)
C40.0550 (12)0.0529 (11)0.0346 (11)0.0021 (9)0.0081 (9)0.0050 (8)
C60.0510 (12)0.0529 (12)0.0467 (12)0.0029 (9)0.0155 (10)0.0073 (9)
C30.0466 (11)0.0463 (11)0.0387 (10)0.0006 (8)0.0090 (9)0.0034 (8)
N10.0928 (15)0.0965 (15)0.0456 (11)0.0454 (12)0.0215 (10)0.0188 (10)
C70.0672 (14)0.0618 (13)0.0568 (13)0.0111 (11)0.0194 (11)0.0026 (10)
C110.0807 (16)0.0550 (13)0.0478 (12)0.0075 (11)0.0154 (11)0.0028 (10)
C120.0770 (16)0.0679 (14)0.0421 (12)0.0073 (11)0.0107 (11)0.0048 (10)
C80.0811 (17)0.0685 (15)0.0898 (19)0.0262 (13)0.0385 (14)0.0114 (13)
C100.115 (2)0.129 (2)0.0536 (15)0.067 (2)0.0270 (15)0.0310 (15)
C90.0903 (19)0.105 (2)0.0823 (19)0.0484 (16)0.0338 (15)0.0386 (16)
C130.131 (2)0.0873 (18)0.0572 (16)0.0271 (17)0.0078 (16)0.0158 (13)
C140.125 (3)0.108 (2)0.0532 (15)0.0132 (18)0.0064 (15)0.0242 (14)
Geometric parameters (Å, º) top
O1—C11.375 (2)C11—C121.504 (3)
O1—C111.426 (2)C11—H11A0.9700
C2—C11.379 (3)C11—H11B0.9700
C2—C31.398 (2)C12—C131.499 (3)
C2—H20.9300C12—H12A0.9700
C1—C3i1.406 (3)C12—H12B0.9700
C5—C41.328 (3)C8—C91.356 (3)
C5—C61.462 (3)C8—H80.9300
C5—H50.9300C10—C91.353 (3)
C4—C31.466 (3)C10—H100.9300
C4—H40.9300C9—H90.9300
C6—N11.336 (2)C13—C141.506 (3)
C6—C71.390 (3)C13—H13A0.9700
C3—C1i1.406 (3)C13—H13B0.9700
N1—C101.334 (3)C14—H14A0.9600
C7—C81.375 (3)C14—H14B0.9600
C7—H70.9300C14—H14C0.9600
C1—O1—C11119.07 (14)H11A—C11—H11B108.5
C1—C2—C3121.80 (18)C13—C12—C11114.19 (19)
C1—C2—H2119.1C13—C12—H12A108.7
C3—C2—H2119.1C11—C12—H12A108.7
O1—C1—C2123.88 (17)C13—C12—H12B108.7
O1—C1—C3i115.58 (15)C11—C12—H12B108.7
C2—C1—C3i120.53 (17)H12A—C12—H12B107.6
C4—C5—C6125.48 (18)C9—C8—C7119.1 (2)
C4—C5—H5117.3C9—C8—H8120.4
C6—C5—H5117.3C7—C8—H8120.4
C5—C4—C3126.43 (18)N1—C10—C9125.0 (2)
C5—C4—H4116.8N1—C10—H10117.5
C3—C4—H4116.8C9—C10—H10117.5
N1—C6—C7121.57 (18)C10—C9—C8118.2 (2)
N1—C6—C5118.03 (18)C10—C9—H9120.9
C7—C6—C5120.38 (18)C8—C9—H9120.9
C2—C3—C1i117.66 (16)C12—C13—C14113.1 (2)
C2—C3—C4122.17 (17)C12—C13—H13A109.0
C1i—C3—C4120.15 (16)C14—C13—H13A109.0
C10—N1—C6116.8 (2)C12—C13—H13B109.0
C8—C7—C6119.3 (2)C14—C13—H13B109.0
C8—C7—H7120.4H13A—C13—H13B107.8
C6—C7—H7120.4C13—C14—H14A109.5
O1—C11—C12107.37 (16)C13—C14—H14B109.5
O1—C11—H11A110.2H14A—C14—H14B109.5
C12—C11—H11A110.2C13—C14—H14C109.5
O1—C11—H11B110.2H14A—C14—H14C109.5
C12—C11—H11B110.2H14B—C14—H14C109.5
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N1ii0.932.703.446 (3)138
Symmetry code: (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC28H32N2O2
Mr428.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.882 (5), 13.892 (5), 10.387 (5)
β (°) 107.392 (5)
V3)1223.0 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.964, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
8512, 2162, 1385
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.154, 1.03
No. of reflections2162
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N1i0.932.703.446 (3)138
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant Nos. 50532030, 20771001 and 50703001) and the Team for Scientific Innovation Foundation of Anhui Province (grant No. 2006 K J007TD).

References

First citationBrandenburg, K. & Putz, H. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, H. J., Tao, X. T., Yang, J. X., Yan, Y. X., Ren, Y., Zhao, H. P., Xin, Q., Yu, W. T. & Jiang, M. H. (2008). Cryst. Growth Des. 8, 259–264.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaumov, P., Sekine, A., Uekusa, H. & Ohashi, Y. (2002). J. Am. Chem. Soc. 124, 8540–8541.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds