organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[(2-Hy­dr­oxy-1-naphth­yl)methyl­­idene­amino]­imidazolidine-2,4-dione

aDepartment of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China
*Correspondence e-mail: shenglq@fync.edu.cn

(Received 18 May 2010; accepted 27 May 2010; online 9 June 2010)

The title compound, C14H11N3O3, adopts an E or trans configuration with respect to the C=N bond. In the mol­ecule there is an intra­molecular O—H⋯N hydrogen bond involving the hy­droxy substituent at the 2-positon of the naphthalene ring and the adjacent methyl­ene­amino N atom. The mol­ecule is roughly planar, the dihedral angle between the naphthalene and imidazolidine-2,4-dione mean planes being 8.4 (1)°. In the crystal, pairs of N—H⋯O hydrogen bonds link mol­ecules into inversion dimers. These dimers are futher linked via C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

For the naphthalene group as a fluoro­phore, see: Li et al. (2010[Li, L., Dang, Y.-Q., Li, H.-W., Wang, B. & Wu, Y.-Q. (2010). Tetrahedron Lett. 51, 618-621.]); Iijima et al. (2010[Iijima, T., Momotake, A., Shinohara, Y., Sato, T., Nishimura, Y. & Arai, T. (2010). J. Phys. Chem. A, 114, 1603-1609.]). For a related structure, see: Xu et al. (2009[Xu, H.-J., Du, N.-N., Jiang, X.-Y., Sheng, L.-Q. & Tian, Y.-P. (2009). Acta Cryst. E65, o1047.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O3

  • Mr = 269.26

  • Monoclinic, P 21 /c

  • a = 11.5122 (7) Å

  • b = 6.0233 (3) Å

  • c = 17.9955 (10) Å

  • β = 96.773 (5)°

  • V = 1239.13 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.959, Tmax = 0.969

  • 4288 measured reflections

  • 2136 independent reflections

  • 1053 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.067

  • S = 0.72

  • 2136 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1i 0.890 (18) 1.962 (18) 2.851 (2) 177.9 (19)
O3—H4⋯N1 0.82 1.91 2.622 (2) 145
C6—H6⋯O2ii 0.93 2.55 3.469 (2) 169
C14—H14B⋯O2ii 0.97 2.36 3.038 (2) 127
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The naphthalene group as a fluorophore has been studied extensively due to its characteristic photophysical properties and the competitive stability in the environment (Li et al., 2010; Iijima et al., 2010). As part of an ongoing study of Schiff bases incorporating the naphthalene group (Xu et al., 2009), we report here on the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. It can be seen to display a trans configuration about the C\bN bond. The bond lengths are normal (Allen et al., 1987). There is an intramolecular O-H···N hydrogen bond (Table 1) and the molecule is relatively planar; dihedral angle involving the naphthalene mean plane and the imidazolidine-2,4-dione group mean plane being 8.4 (1)°. In the crystal structure of the title compound N—H···O intermolecular hydrongen bonds (Table 1) link two molecules to form dimmers situated about an inversion center. The molecules are further linked by weak C-H···O interactions to form a three-dimensional network (Fig. 2).

Related literature top

For the naphthalene group as a fluorophore, see: Li et al. (2010); Iijima et al. (2010). For a related structure, see: Xu et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The solution of 1-Aminohydantoin hydrochloride (0.151 g, 1 mmol) in 5 ml of ethanol was added slowly to a solution containing 2-hydro-1- naphthaldehyde (0.172 g, 1 mmol) in 15 ml of absolute ethanol under heating and stirring. The mixture was then refluxed for 2 h. Afterwards the mixture was cooled to rt and the resulting solution to stand in air. After 15 days yellow block-shaped crystals were formed, on slow evaporation of the solvent.

Refinement top

The N3 H-atom was located in a difference Fourier map and freely refined: N-H = 0.89 (2) Å. All other H-atoms were placed in calculated positions and treated as riding: O—H = 0.82 Å, C—H = 0.93 or 0.97 Å, with Uiso(H) = 1.5 Ueq(parent O-atom) and = 1.2Ueq(parent C-atom).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The intramolecular O-H···N hydrogen bond is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. Crystal packing viewed along the b-axis of the title compound. The intra- and intermolecular hydrogen bonds are shown as dashed lines (see Table 1 for details).
(E)-1-[(2-Hydroxy-1-naphthyl)methylideneamino]imidazolidine-2,4-dione top
Crystal data top
C14H11N3O3F(000) = 560
Mr = 269.26Dx = 1.443 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1596 reflections
a = 11.5122 (7) Åθ = 3.1–29.0°
b = 6.0233 (3) ŵ = 0.11 mm1
c = 17.9955 (10) ÅT = 293 K
β = 96.773 (5)°Block, yellow
V = 1239.13 (12) Å30.40 × 0.30 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
2136 independent reflections
Radiation source: fine-focus sealed tube1053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 15.9149 pixels mm-1θmax = 25.0°, θmin = 3.6°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 06
Tmin = 0.959, Tmax = 0.969l = 021
4288 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 0.72 w = 1/[σ2(Fo2) + (0.0266P)2]
where P = (Fo2 + 2Fc2)/3
2136 reflections(Δ/σ)max = 0.002
186 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C14H11N3O3V = 1239.13 (12) Å3
Mr = 269.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5122 (7) ŵ = 0.11 mm1
b = 6.0233 (3) ÅT = 293 K
c = 17.9955 (10) Å0.40 × 0.30 × 0.30 mm
β = 96.773 (5)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
2136 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1053 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.969Rint = 0.031
4288 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 0.72Δρmax = 0.11 e Å3
2136 reflectionsΔρmin = 0.13 e Å3
186 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm CrysAlisPro (Oxford Diffraction, 2009).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59888 (11)0.25607 (18)0.48396 (8)0.0491 (5)
O20.40014 (13)0.1526 (2)0.68676 (8)0.0710 (7)
O30.80499 (13)0.8397 (2)0.49453 (8)0.0645 (6)
N10.67397 (13)0.6177 (2)0.57838 (9)0.0420 (6)
N20.59925 (13)0.4517 (2)0.59460 (9)0.0425 (6)
N30.48790 (15)0.1552 (3)0.57835 (10)0.0454 (7)
C10.79653 (19)1.2321 (3)0.80751 (14)0.0665 (10)
C20.8627 (2)1.4184 (4)0.79511 (16)0.0705 (10)
C30.90328 (19)1.4454 (3)0.72772 (16)0.0626 (9)
C40.87808 (17)1.2884 (3)0.66974 (14)0.0504 (9)
C50.80840 (16)1.1006 (3)0.68128 (12)0.0434 (8)
C60.77027 (17)1.0762 (3)0.75298 (13)0.0549 (9)
C70.91986 (18)1.3147 (3)0.59955 (15)0.0606 (10)
C80.89532 (17)1.1653 (4)0.54362 (13)0.0589 (9)
C90.82579 (17)0.9788 (3)0.55419 (13)0.0495 (9)
C100.78023 (16)0.9449 (3)0.62117 (12)0.0413 (8)
C110.70303 (15)0.7611 (3)0.63076 (11)0.0436 (7)
C120.56648 (16)0.2867 (3)0.54520 (12)0.0398 (8)
C130.46509 (18)0.2336 (3)0.64613 (12)0.0503 (9)
C140.53798 (18)0.4406 (3)0.66051 (11)0.0496 (8)
H10.769601.213100.853800.0800*
H20.879101.524000.832600.0850*
H30.948401.569200.719700.0750*
H3N0.4590 (16)0.028 (3)0.5590 (11)0.065 (7)*
H40.767700.731800.506300.0970*
H60.726700.952100.763000.0660*
H70.965401.437900.591500.0730*
H80.924601.186300.498100.0710*
H110.673100.745200.676300.0520*
H14A0.489200.570400.664400.0600*
H14B0.592200.426900.705800.0600*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0538 (10)0.0529 (8)0.0415 (10)0.0044 (7)0.0094 (8)0.0084 (7)
O20.0901 (13)0.0776 (10)0.0488 (11)0.0257 (9)0.0233 (9)0.0057 (9)
O30.0725 (12)0.0686 (10)0.0544 (11)0.0094 (8)0.0156 (9)0.0054 (9)
N10.0401 (10)0.0373 (9)0.0473 (12)0.0016 (8)0.0000 (9)0.0017 (9)
N20.0467 (11)0.0387 (10)0.0424 (12)0.0071 (9)0.0067 (9)0.0046 (9)
N30.0522 (12)0.0420 (11)0.0421 (13)0.0091 (9)0.0061 (10)0.0013 (10)
C10.0649 (16)0.0670 (16)0.0662 (18)0.0015 (14)0.0014 (14)0.0187 (14)
C20.0648 (18)0.0583 (16)0.083 (2)0.0033 (13)0.0137 (16)0.0216 (15)
C30.0477 (15)0.0391 (13)0.095 (2)0.0026 (11)0.0162 (15)0.0068 (15)
C40.0383 (14)0.0375 (13)0.0718 (18)0.0023 (11)0.0083 (12)0.0001 (13)
C50.0343 (12)0.0361 (12)0.0576 (16)0.0059 (10)0.0042 (11)0.0009 (11)
C60.0523 (15)0.0508 (14)0.0602 (17)0.0031 (11)0.0014 (13)0.0107 (13)
C70.0455 (15)0.0441 (14)0.090 (2)0.0063 (11)0.0017 (15)0.0105 (14)
C80.0478 (14)0.0590 (15)0.0704 (18)0.0027 (12)0.0097 (13)0.0143 (14)
C90.0432 (14)0.0457 (13)0.0586 (17)0.0027 (11)0.0013 (12)0.0004 (12)
C100.0328 (12)0.0372 (12)0.0532 (15)0.0012 (10)0.0017 (11)0.0029 (11)
C110.0457 (13)0.0405 (11)0.0441 (14)0.0024 (11)0.0037 (11)0.0020 (11)
C120.0377 (13)0.0386 (13)0.0417 (14)0.0016 (10)0.0010 (11)0.0013 (11)
C130.0601 (16)0.0494 (14)0.0406 (15)0.0026 (12)0.0029 (12)0.0028 (12)
C140.0585 (15)0.0488 (13)0.0410 (14)0.0022 (11)0.0036 (12)0.0052 (10)
Geometric parameters (Å, º) top
O1—C121.219 (3)C5—C101.440 (3)
O2—C131.209 (3)C5—C61.419 (3)
O3—C91.361 (3)C7—C81.355 (3)
O3—H40.8200C8—C91.405 (3)
N1—N21.3726 (19)C9—C101.385 (3)
N1—C111.293 (2)C10—C111.443 (3)
N2—C121.357 (2)C13—C141.508 (3)
N2—C141.451 (3)C1—H10.9300
N3—C131.362 (3)C2—H20.9300
N3—C121.389 (3)C3—H30.9300
N3—H3N0.890 (18)C6—H60.9300
C1—C61.366 (3)C7—H70.9300
C1—C21.389 (3)C8—H80.9300
C2—C31.360 (4)C11—H110.9300
C3—C41.413 (3)C14—H14A0.9700
C4—C71.413 (4)C14—H14B0.9700
C4—C51.416 (3)
C9—O3—H4109.00N2—C12—N3106.33 (17)
N2—N1—C11116.51 (16)O1—C12—N2127.76 (17)
N1—N2—C14125.77 (14)O1—C12—N3125.91 (18)
C12—N2—C14112.17 (15)O2—C13—N3126.88 (18)
N1—N2—C12121.80 (16)O2—C13—C14126.97 (19)
C12—N3—C13113.02 (17)N3—C13—C14106.15 (17)
C13—N3—H3N123.1 (13)N2—C14—C13102.24 (15)
C12—N3—H3N123.7 (13)C2—C1—H1119.00
C2—C1—C6121.3 (2)C6—C1—H1119.00
C1—C2—C3119.5 (2)C1—C2—H2120.00
C2—C3—C4121.1 (2)C3—C2—H2120.00
C3—C4—C5119.8 (2)C2—C3—H3119.00
C3—C4—C7121.57 (18)C4—C3—H3119.00
C5—C4—C7118.64 (19)C1—C6—H6119.00
C4—C5—C10119.44 (19)C5—C6—H6119.00
C4—C5—C6117.23 (19)C4—C7—H7119.00
C6—C5—C10123.33 (17)C8—C7—H7119.00
C1—C6—C5121.07 (18)C7—C8—H8120.00
C4—C7—C8121.78 (19)C9—C8—H8120.00
C7—C8—C9120.2 (2)N1—C11—H11119.00
C8—C9—C10121.05 (19)C10—C11—H11119.00
O3—C9—C10123.12 (17)N2—C14—H14A111.00
O3—C9—C8115.82 (19)N2—C14—H14B111.00
C5—C10—C9118.88 (17)C13—C14—H14A111.00
C5—C10—C11119.83 (18)C13—C14—H14B111.00
C9—C10—C11121.27 (18)H14A—C14—H14B109.00
N1—C11—C10122.37 (18)
C11—N1—N2—C12177.23 (16)C7—C4—C5—C101.2 (3)
C11—N1—N2—C149.1 (2)C3—C4—C7—C8179.6 (2)
N2—N1—C11—C10179.57 (16)C5—C4—C7—C80.2 (3)
N1—N2—C12—O12.8 (3)C4—C5—C6—C12.3 (3)
N1—N2—C12—N3177.61 (15)C10—C5—C6—C1178.07 (19)
C14—N2—C12—O1177.26 (19)C4—C5—C10—C92.3 (3)
C14—N2—C12—N33.1 (2)C4—C5—C10—C11175.93 (17)
N1—N2—C14—C13176.87 (16)C6—C5—C10—C9177.34 (18)
C12—N2—C14—C132.7 (2)C6—C5—C10—C114.4 (3)
C13—N3—C12—O1178.02 (19)C4—C7—C8—C90.6 (3)
C13—N3—C12—N22.4 (2)C7—C8—C9—O3179.31 (19)
C12—N3—C13—O2179.8 (2)C7—C8—C9—C100.6 (3)
C12—N3—C13—C140.7 (2)O3—C9—C10—C5179.36 (17)
C6—C1—C2—C30.7 (3)O3—C9—C10—C112.4 (3)
C2—C1—C6—C50.9 (3)C8—C9—C10—C52.1 (3)
C1—C2—C3—C40.8 (3)C8—C9—C10—C11176.19 (18)
C2—C3—C4—C50.7 (3)C5—C10—C11—N1179.33 (17)
C2—C3—C4—C7179.9 (2)C9—C10—C11—N11.1 (3)
C3—C4—C5—C62.2 (3)O2—C13—C14—N2178.40 (19)
C3—C4—C5—C10178.15 (18)N3—C13—C14—N21.1 (2)
C7—C4—C5—C6178.47 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.890 (18)1.962 (18)2.851 (2)177.9 (19)
O3—H4···N10.821.912.622 (2)145
C6—H6···O2ii0.932.553.469 (2)169
C14—H14B···O2ii0.972.363.038 (2)127
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H11N3O3
Mr269.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.5122 (7), 6.0233 (3), 17.9955 (10)
β (°) 96.773 (5)
V3)1239.13 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.959, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
4288, 2136, 1053
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.067, 0.72
No. of reflections2136
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.11, 0.13

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.890 (18)1.962 (18)2.851 (2)177.9 (19)
O3—H4···N10.821.912.622 (2)145
C6—H6···O2ii0.932.553.469 (2)169
C14—H14B···O2ii0.972.363.038 (2)127
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Key Project of Science and Technology of Anhui, (grant No. 08010302218), the Natural Science Foundation of Anhui Provincial University (grant No. KJ2009A127) and the National Natural Science Foundation of China (grant No. 20971024).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationIijima, T., Momotake, A., Shinohara, Y., Sato, T., Nishimura, Y. & Arai, T. (2010). J. Phys. Chem. A, 114, 1603–1609.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, L., Dang, Y.-Q., Li, H.-W., Wang, B. & Wu, Y.-Q. (2010). Tetrahedron Lett. 51, 618–621.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H.-J., Du, N.-N., Jiang, X.-Y., Sheng, L.-Q. & Tian, Y.-P. (2009). Acta Cryst. E65, o1047.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds