organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1757-o1758

6-Nitro­benzimidazolium di­hydrogen phosphate 6-nitro­benzimidazole solvate dihydrate

aState Key Lab. Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
*Correspondence e-mail: liangyunxiao@nbu.edu.cn

(Received 29 May 2010; accepted 18 June 2010; online 23 June 2010)

In the crystal structure of the title compound, C7H6N3O2+·H2PO4·C7H5N3O2·2H2O, the components are connected through O—H⋯O, N—H⋯O and O—H⋯N hydrogen-bonding inter­actions, forming a sheet-like structure parallel to (101). Adjacent sheets are further linked together by strong O—H⋯O hydrogen-bonds involving the dihydrogenphosphate groups. ππ stacking inter­actions between neighbouring aromatic constituents [centroid–centroid distance 3.653 (3) Å] help to consolidate the crystal packing.

Related literature

For the preparation of inorganic metal phosphates, see: Benard et al. (1996[Benard, P., Brandel, V., Dacheux, N., Jaulmes, S., Launay, S., Lindecker, C., Genet, M. & Quarton, M. (1996). Chem. Mater. 8, 181-188.]); Jensen et al. (2000[Jensen, T. R., Hazell, R. G., Vosegaard, T. & Jakobsen, H. J. (2000). Inorg. Chem. 39, 2026-2032.]). For template synthesis of phosphates, see: Sameski et al. (1993[Sameski, J. E., Brzezinski, L. J., Anderson, B., Didiuk, M., Manchanda, R., Crabtree, R. H., BrudVig, G. W. & Schulte, G. K. (1993). Inorg. Chem. 32, 3265-3269.]); Lii et al. (1998[Lii, K.-H., Huang, Y.-F., Huang, C.-Y., Lin, H.-M., Jiang, Y.-C., Liao, F.-L. & Wang, S.-L. (1998). Chem. Mater. 10, 2599-2609.]). For phosphates with organic cations, see: Dakhlaoui et al. (2007[Dakhlaoui, A., Gmigui, K. & Smiri, L. S. (2007). Acta Cryst. E63, o537-o539.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6N3O2+·H2PO4·C7H5N3O2·2H2O

  • Mr = 460.31

  • Triclinic, [P \overline 1]

  • a = 9.4683 (19) Å

  • b = 9.990 (2) Å

  • c = 11.407 (2) Å

  • α = 90.73 (3)°

  • β = 107.10 (3)°

  • γ = 111.66 (3)°

  • V = 949.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.37 × 0.32 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.924, Tmax = 0.975

  • 9332 measured reflections

  • 4286 independent reflections

  • 2827 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.141

  • S = 1.14

  • 4286 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

P1—O8 1.500 (2)
P1—O7 1.504 (2)
P1—O5 1.5591 (19)
P1—O6 1.562 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O7i 0.86 1.74 2.600 (2) 179
N2—H2A⋯O9 0.86 1.92 2.752 (2) 164
O6—H6A⋯N4ii 1.03 1.66 2.665 (2) 165
O5—H5A⋯O8iii 0.91 1.62 2.531 (2) 174
N5—H5B⋯O7 0.86 1.91 2.773 (2) 176
O9—H9A⋯O4iv 0.91 2.43 3.161 (2) 137
O9—H9B⋯O10v 0.85 1.92 2.754 (2) 165
O10—H10A⋯O8 0.91 1.85 2.740 (2) 169
O10—H10B⋯O9iii 0.84 2.16 2.917 (2) 149
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+2, -z+1; (iv) -x+1, -y+2, -z; (v) x, y, z-1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Phosphates are of great interest because of their rich crystal chemistry and practical applications. Up to now, numerous inorganic metal phosphates have been reported (e.g. Benard et al., 1996; Jensen et al., 2000). Furthermore, various of these phosphates were synthesized by structure-orienting templates molecules, most ferquently amines (Sameski et al., 1993; Lii et al., 1998). Compared with these inorganic phosphates, the synthesis of non-metal phosphates was less well explored in the past decades (Dakhlaoui et al., 2007). Herein, we describe the synthesis and crystal structure of the title compound (I), a new non-metal phosphate with formula (C7H6N3O2)[H2PO4].(C7H5N3O2).2(H2O)

As shown in Fig.1, the structure of (I) consists of one (C7H6N3O2)+ cation, one [H2PO4]- anion, one (C7H5N3O2) solvent molecule and two H2O molecules, viz. one imidazole molecule is protonated, one imidazole molecule acts as an unprotonated solvent and a dihydrogenphosphate group is present. The O—P—O angles are in the range 105.62 (11)—115.73 (13) °. The P—O bond lengths to the terminal O atoms are 1.500 (2) and 1.504 (2) Å while the P—OH bond lengths are considerably longer with 1.5591 (19) and 1.562 (2) Å.

As is well known, hydrogen bonding interactions play an important role in the formation and stability of low-dimensional structures. In the present structure, the [(C7H6N3O2)]+ cations, [H2PO4]- anions, (C7H5N3O2) and H2O molecules are linked together through hydrogen bonds: N1—H1A···O7, N5—H5B···O7; N2—H2A···O9, O6—H6A···N4, O9—H4A···O4, O9—H9B···O10, O10—H10B···O3 (Fig. 2), forming a two-dimensional sheetlike structure parallel to (101). Adjacent sheets are further linked together by strong H-bonding interactions [O5—H5A···O8, O10—H10A···O8, O10—H10B···O9]. ππ stacking interactions between neighboring 6-nitrobenzimidazole molecules with an interplanar distance of 3.653 (3) Å help to consolidate a three-dimensional supramolecular network structure (Fig. 3).

Related literature top

For the preparation of inorganic metal phosphates, see: Benard et al. (1996); Jensen et al. (2000). For template synthesis of phosphates, see: Sameski et al. (1993); Lii et al. (1998). For phosphates with organic cations, see: Dakhlaoui et al. (2007).

Experimental top

The title compound was obtained by the reaction of phosphoric acid, 6-nitrobenzimidazole and methanol/distilled water under room temperature. Typically, a mixture of phosphoric acid (0.2 ml), analytically pure 6-nitrobenzimidazole (0.164 g) and methanol/distilled water (10 ml/10 ml) was stirred at room temperature before it was filtered. The final filtrate was allowed to evaporate slowly at room temperature for 7 days to obtain yellow crystals.

Refinement top

All H atoms associated with C atoms and N atoms were positioned geometrically and refined as riding model, with N–H = 0.86 Å, C–Haromatic type = 0.93 Å, Uiso(H) = 1.2Ueq(N), Uiso(H) = 1.2Ueq(C). Hydrogen atoms attached to O5, O6, O9 and O10 were discernible from difference Fourier maps. Their Uiso(H) values were fixed at 0.05 Å2 and their coordinates were not refined.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: Crystal Structure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The layer structure of (C7H6N3O2)[H2PO4].(C7H5N3O2).2(H2O). Hydrogen bonds are indicated by dashed lines.
[Figure 3] Fig. 3. A packing diagram for the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonds.
6-Nitrobenzimidazolium dihydrogen phosphate 6-nitrobenzimidazole solvate dihydrate top
Crystal data top
C7H6N3O2+·H2PO4·C7H5N3O2·2H2OZ = 2
Mr = 460.31F(000) = 476
Triclinic, P1Dx = 1.610 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4683 (19) ÅCell parameters from 6404 reflections
b = 9.990 (2) Åθ = 3.1–27.5°
c = 11.407 (2) ŵ = 0.22 mm1
α = 90.73 (3)°T = 293 K
β = 107.10 (3)°Platelet, yellow
γ = 111.66 (3)°0.37 × 0.32 × 0.12 mm
V = 949.4 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4286 independent reflections
Radiation source: fine-focus sealed tube2827 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.924, Tmax = 0.975k = 1212
9332 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.7024P]
where P = (Fo2 + 2Fc2)/3
4286 reflections(Δ/σ)max = 0.005
280 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C7H6N3O2+·H2PO4·C7H5N3O2·2H2Oγ = 111.66 (3)°
Mr = 460.31V = 949.4 (3) Å3
Triclinic, P1Z = 2
a = 9.4683 (19) ÅMo Kα radiation
b = 9.990 (2) ŵ = 0.22 mm1
c = 11.407 (2) ÅT = 293 K
α = 90.73 (3)°0.37 × 0.32 × 0.12 mm
β = 107.10 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4286 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2827 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.975Rint = 0.021
9332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.14Δρmax = 0.43 e Å3
4286 reflectionsΔρmin = 0.47 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.46015 (8)0.77962 (7)0.52850 (6)0.03448 (19)
O11.0279 (3)0.6110 (3)0.1175 (3)0.0759 (8)
N10.4441 (3)0.4733 (2)0.2701 (2)0.0392 (5)
H1A0.43680.41140.32210.047*
C10.6946 (3)0.4893 (3)0.2258 (2)0.0336 (5)
H1B0.71810.42260.27600.040*
O20.9605 (3)0.4445 (3)0.2308 (2)0.0638 (6)
N20.3902 (3)0.6274 (2)0.1497 (2)0.0385 (5)
H2A0.34170.68000.11200.046*
C20.5632 (3)0.5227 (3)0.2149 (2)0.0313 (5)
O31.1886 (3)1.0612 (3)0.1237 (3)0.0771 (8)
N30.9352 (3)0.5369 (3)0.1686 (2)0.0447 (6)
C30.5284 (3)0.6217 (3)0.1383 (2)0.0317 (5)
O41.0632 (3)1.1997 (3)0.1303 (3)0.0762 (8)
N41.0431 (3)0.7285 (2)0.4511 (2)0.0379 (5)
C40.6251 (3)0.6929 (3)0.0684 (2)0.0376 (6)
H4B0.60110.75830.01680.045*
O50.4699 (3)0.8359 (2)0.40310 (18)0.0489 (5)
H5A0.49180.93240.40140.050*
N50.8298 (3)0.7543 (2)0.47608 (19)0.0375 (5)
H5B0.74990.74030.50240.045*
C50.7570 (3)0.6616 (3)0.0796 (2)0.0376 (6)
H5C0.82590.70700.03550.045*
O60.2931 (2)0.6510 (2)0.4983 (2)0.0471 (5)
H6A0.18680.66470.48260.050*
N61.0976 (3)1.0955 (3)0.1613 (2)0.0492 (6)
C60.7888 (3)0.5623 (3)0.1566 (2)0.0347 (6)
O70.5822 (2)0.7132 (2)0.57244 (19)0.0456 (5)
C70.3444 (3)0.5381 (3)0.2287 (3)0.0425 (6)
H7B0.25390.52340.25180.051*
O80.4731 (3)0.8988 (2)0.61749 (16)0.0435 (5)
C81.0885 (3)0.9142 (3)0.3032 (2)0.0367 (6)
H8B1.17690.90450.29020.044*
O90.2853 (3)0.8166 (3)0.0119 (2)0.0625 (6)
H9A0.20250.84210.01120.050*
H9B0.34010.85900.03390.050*
C91.0114 (3)0.8331 (3)0.3813 (2)0.0320 (5)
O100.4652 (3)0.9058 (3)0.8556 (2)0.0754 (8)
H10A0.46520.89140.77710.050*
H10B0.55640.96460.90080.050*
C100.8767 (3)0.8494 (3)0.3970 (2)0.0322 (5)
C110.8168 (3)0.9477 (3)0.3391 (2)0.0389 (6)
H11A0.72790.95780.35080.047*
C120.8942 (3)1.0293 (3)0.2638 (2)0.0401 (6)
H12A0.85921.09760.22440.048*
C131.0254 (3)1.0093 (3)0.2469 (2)0.0364 (6)
C140.9324 (3)0.6863 (3)0.5052 (2)0.0387 (6)
H14A0.92530.61610.55850.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0389 (4)0.0324 (4)0.0420 (4)0.0175 (3)0.0220 (3)0.0148 (3)
O10.0584 (15)0.097 (2)0.104 (2)0.0408 (15)0.0564 (15)0.0469 (16)
N10.0364 (12)0.0418 (13)0.0442 (13)0.0156 (10)0.0187 (10)0.0156 (10)
C10.0338 (13)0.0333 (13)0.0338 (13)0.0131 (11)0.0109 (10)0.0113 (10)
O20.0587 (14)0.0820 (17)0.0750 (16)0.0482 (14)0.0283 (12)0.0319 (13)
N20.0416 (13)0.0427 (13)0.0403 (12)0.0253 (11)0.0146 (10)0.0109 (10)
C20.0294 (12)0.0323 (13)0.0327 (13)0.0109 (10)0.0120 (10)0.0063 (10)
O30.0843 (18)0.103 (2)0.0893 (18)0.0559 (17)0.0655 (16)0.0499 (16)
N30.0375 (13)0.0537 (15)0.0484 (14)0.0204 (12)0.0182 (11)0.0078 (11)
C30.0347 (13)0.0311 (13)0.0282 (12)0.0131 (11)0.0084 (10)0.0037 (9)
O40.0911 (19)0.0713 (16)0.101 (2)0.0464 (15)0.0594 (16)0.0566 (15)
N40.0334 (12)0.0393 (12)0.0444 (13)0.0156 (10)0.0151 (10)0.0105 (10)
C40.0433 (15)0.0337 (13)0.0330 (13)0.0130 (12)0.0107 (11)0.0087 (10)
O50.0798 (15)0.0367 (10)0.0441 (11)0.0264 (11)0.0341 (11)0.0164 (8)
N50.0325 (12)0.0453 (13)0.0373 (12)0.0135 (10)0.0172 (9)0.0084 (9)
C50.0366 (14)0.0419 (15)0.0325 (13)0.0109 (12)0.0144 (11)0.0086 (11)
O60.0365 (11)0.0321 (10)0.0764 (14)0.0126 (8)0.0240 (10)0.0171 (9)
N60.0469 (14)0.0591 (16)0.0500 (15)0.0219 (13)0.0252 (12)0.0194 (12)
C60.0289 (13)0.0423 (14)0.0322 (13)0.0149 (11)0.0078 (10)0.0036 (10)
O70.0405 (11)0.0490 (11)0.0649 (13)0.0249 (9)0.0316 (10)0.0280 (10)
C70.0383 (15)0.0491 (16)0.0470 (16)0.0212 (13)0.0182 (12)0.0106 (12)
O80.0659 (13)0.0377 (10)0.0380 (10)0.0233 (10)0.0281 (9)0.0151 (8)
C80.0297 (13)0.0420 (15)0.0407 (14)0.0125 (11)0.0166 (11)0.0042 (11)
O90.0635 (14)0.0811 (16)0.0725 (15)0.0465 (13)0.0389 (12)0.0432 (12)
C90.0291 (12)0.0320 (13)0.0331 (13)0.0088 (10)0.0116 (10)0.0031 (10)
O100.0840 (19)0.100 (2)0.0467 (13)0.0308 (16)0.0344 (13)0.0136 (13)
C100.0298 (13)0.0349 (13)0.0319 (13)0.0097 (11)0.0133 (10)0.0055 (10)
C110.0332 (14)0.0465 (15)0.0410 (15)0.0189 (12)0.0133 (11)0.0054 (11)
C120.0376 (14)0.0437 (15)0.0426 (15)0.0183 (12)0.0148 (12)0.0108 (11)
C130.0357 (14)0.0355 (14)0.0360 (14)0.0090 (11)0.0150 (11)0.0075 (10)
C140.0367 (14)0.0356 (14)0.0417 (15)0.0111 (12)0.0132 (11)0.0093 (11)
Geometric parameters (Å, º) top
P1—O81.500 (2)O5—H5A0.9100
P1—O71.504 (2)N5—C141.348 (4)
P1—O51.5591 (19)N5—C101.364 (3)
P1—O61.562 (2)N5—H5B0.8600
O1—N31.221 (3)C5—C61.391 (4)
N1—C71.315 (4)C5—H5C0.9300
N1—C21.388 (3)O6—H6A1.0287
N1—H1A0.8600N6—C131.463 (3)
C1—C21.376 (3)C7—H7B0.9300
C1—C61.378 (3)C8—C131.371 (4)
C1—H1B0.9300C8—C91.396 (3)
O2—N31.221 (3)C8—H8B0.9300
N2—C71.328 (3)O9—H9A0.9074
N2—C31.374 (3)O9—H9B0.8512
N2—H2A0.8600C9—C101.405 (3)
C2—C31.393 (3)O10—H10A0.9048
O3—N61.215 (3)O10—H10B0.8438
N3—C61.467 (3)C10—C111.389 (4)
C3—C41.394 (4)C11—C121.373 (4)
O4—N61.228 (3)C11—H11A0.9300
N4—C141.310 (3)C12—C131.395 (4)
N4—C91.388 (3)C12—H12A0.9300
C4—C51.367 (4)C14—H14A0.9300
C4—H4B0.9300
O8—P1—O7115.73 (13)C6—C5—H5C119.8
O8—P1—O5109.95 (10)P1—O6—H6A123.8
O7—P1—O5108.51 (11)O3—N6—O4122.7 (3)
O8—P1—O6110.30 (12)O3—N6—C13118.9 (3)
O7—P1—O6105.62 (11)O4—N6—C13118.4 (2)
O5—P1—O6106.23 (13)C1—C6—C5124.3 (2)
C7—N1—C2107.7 (2)C1—C6—N3117.6 (2)
C7—N1—H1A126.2C5—C6—N3118.0 (2)
C2—N1—H1A126.2N1—C7—N2110.9 (2)
C2—C1—C6114.8 (2)N1—C7—H7B124.5
C2—C1—H1B122.6N2—C7—H7B124.5
C6—C1—H1B122.6C13—C8—C9115.7 (2)
C7—N2—C3108.4 (2)C13—C8—H8B122.2
C7—N2—H2A125.8C9—C8—H8B122.2
C3—N2—H2A125.8H9A—O9—H9B116.1
C1—C2—N1131.2 (2)N4—C9—C8130.5 (2)
C1—C2—C3122.0 (2)N4—C9—C10109.0 (2)
N1—C2—C3106.8 (2)C8—C9—C10120.4 (2)
O1—N3—O2122.8 (3)H10A—O10—H10B110.3
O1—N3—C6118.4 (2)N5—C10—C11132.1 (2)
O2—N3—C6118.8 (2)N5—C10—C9105.6 (2)
N2—C3—C2106.2 (2)C11—C10—C9122.3 (2)
N2—C3—C4131.9 (2)C12—C11—C10117.3 (2)
C2—C3—C4121.9 (2)C12—C11—H11A121.4
C14—N4—C9104.8 (2)C10—C11—H11A121.4
C5—C4—C3116.5 (2)C11—C12—C13119.7 (3)
C5—C4—H4B121.8C11—C12—H12A120.1
C3—C4—H4B121.8C13—C12—H12A120.1
P1—O5—H5A115.9C8—C13—C12124.6 (2)
C14—N5—C10107.1 (2)C8—C13—N6118.7 (2)
C14—N5—H5B126.5C12—C13—N6116.7 (2)
C10—N5—H5B126.5N4—C14—N5113.5 (2)
C4—C5—C6120.4 (2)N4—C14—H14A123.3
C4—C5—H5C119.8N5—C14—H14A123.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O7i0.861.742.600 (2)179
N2—H2A···O90.861.922.752 (2)164
O6—H6A···N4ii1.031.662.665 (2)165
O5—H5A···O8iii0.911.622.531 (2)174
N5—H5B···O70.861.912.773 (2)176
O9—H9A···O3ii0.912.593.269 (2)132
O9—H9A···O4iv0.912.433.161 (2)137
O9—H9B···O10v0.851.922.754 (2)165
O10—H10A···O80.911.852.740 (2)169
O10—H10B···O9iii0.842.162.917 (2)149
O10—H10B···O3vi0.842.613.106 (2)119
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x+1, y+2, z; (v) x, y, z1; (vi) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC7H6N3O2+·H2PO4·C7H5N3O2·2H2O
Mr460.31
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.4683 (19), 9.990 (2), 11.407 (2)
α, β, γ (°)90.73 (3), 107.10 (3), 111.66 (3)
V3)949.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.37 × 0.32 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.924, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
9332, 4286, 2827
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.141, 1.14
No. of reflections4286
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.47

Computer programs: RAPID-AUTO (Rigaku, 1998), Crystal Structure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2008).

Selected bond lengths (Å) top
P1—O81.500 (2)P1—O51.5591 (19)
P1—O71.504 (2)P1—O61.562 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O7i0.861.742.600 (2)179
N2—H2A···O90.861.922.752 (2)164
O6—H6A···N4ii1.031.662.665 (2)165
O5—H5A···O8iii0.911.622.531 (2)174
N5—H5B···O70.861.912.773 (2)176
O9—H9A···O4iv0.912.433.161 (2)137
O9—H9B···O10v0.851.922.754 (2)165
O10—H10A···O80.911.852.740 (2)169
O10—H10B···O9iii0.842.162.917 (2)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x+1, y+2, z; (v) x, y, z1.
 

Acknowledgements

This work was supported by the Ningbo Natural Science Foundation (grant Nos. 2007 A610022 and 2009 A610052) and the K. C. Wong Magna Fund in Ningbo University.

References

First citationBenard, P., Brandel, V., Dacheux, N., Jaulmes, S., Launay, S., Lindecker, C., Genet, M. & Quarton, M. (1996). Chem. Mater. 8, 181–188.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDakhlaoui, A., Gmigui, K. & Smiri, L. S. (2007). Acta Cryst. E63, o537–o539.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJensen, T. R., Hazell, R. G., Vosegaard, T. & Jakobsen, H. J. (2000). Inorg. Chem. 39, 2026–2032.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL–5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLii, K.-H., Huang, Y.-F., Huang, C.-Y., Lin, H.-M., Jiang, Y.-C., Liao, F.-L. & Wang, S.-L. (1998). Chem. Mater. 10, 2599–2609.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSameski, J. E., Brzezinski, L. J., Anderson, B., Didiuk, M., Manchanda, R., Crabtree, R. H., BrudVig, G. W. & Schulte, G. K. (1993). Inorg. Chem. 32, 3265–3269.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages o1757-o1758
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds