metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(1,10-phenanthroline-κ2N,N′)lead(II)]-μ-azido-κ2N1:N3-μ-nitrito-κ3O,O′:O′-[(1,10-phenanthroline-κ2N,N′)lead(II)]-di-μ-azido-κ4N1:N1]

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 31 May 2010; accepted 14 June 2010; online 18 June 2010)

The title coordination polymer, [Pb2(N3)3(NO2)(C12H8N2)2]n, has as the repeat unit a centrosymmetric dinuclear mol­ecule having azide and nitrite groups that bridge adjacent heterocycle-coordinated metal centers. One of the azide group uses its terminal ends to bridge whereas the nitrite group chelates to one metal atom and uses one of its O atoms to bridge. The azide and nitrite groups are disordered with respect to each other in a 1:1 ratio. Adjacent dinuclear mol­ecules are further bridged by the other two azide groups, generating a linear chain motif parallel to [010]. Half of the Pb atoms show a Ψ-dodeca­hedral coordination and the other half show a Ψ-penta­gonal-bipyramidal coordination.

Related literature

For the crystal structure of a related lead azide complex, see: Marandi et al. (2007[Marandi, F., Mirtamizdoust, B., Chantrapromma, S. & Fun, H.-K. (2007). Z. Anorg. Allg. Chem. 633, 1329-1332.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(N3)3(NO2)(C12H8N2)2]

  • Mr = 946.89

  • Triclinic, [P \overline 1]

  • a = 7.6860 (5) Å

  • b = 9.2056 (6) Å

  • c = 9.9080 (7) Å

  • α = 90.541 (1)°

  • β = 109.665 (1)°

  • γ = 104.626 (1)°

  • V = 635.32 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 13.29 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.040, Tmax = 0.109

  • 6004 measured reflections

  • 2888 independent reflections

  • 2716 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.071

  • S = 1.03

  • 2888 reflections

  • 193 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 2.17 e Å−3

  • Δρmin = −1.97 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.]).

Supporting information


Comment top

There are a number of 1,10-phenanthroline-chelated lead(II) compounds having inorganic anions (having only few atoms) as counterions whose crystal structures have been reported. For some, two counterions exist in the crystal structure that originally came from the reactants used in the synthesis.

The azide derivative is a polymeric dinuclear chain compound in which the lead atoms show PbN8 and PbN6O2 dodecahedral coordination. In lead azide nicotinate, the azide unit engages in µ3 bridging (Marandi et al., 2007). In Pb2(N3)3(NO2)(C12H8NO)2 (Scheme I, Fig. 1), the azide groups bridge adjacent heterocycle-coordinated metal centers through one nitrogen atom and the third bridging through two nitrogen atoms. The nitrite group chelates to one metal atom and uses one oxygen atom to bind to the inversion-related lead atom. The bridging interactions lead to the formation of a linear chain motif. One of the azide groups that uses its terminal nitrogen atoms to bridge is disordered with respect to the nitrite group in a 1:1 ratio. The disorder gives rise to a Ψ-dodecahedral geometry for 50% of the lead atoms and a Ψ-pentagonal bipyramidal geometry for the other 50% of the lead atoms.

Related literature top

For the crystal structure of a related lead azide complex, see: Marandi et al. (2007).

Experimental top

1,10-Phenanthroline (0.36 g, 2 mmol) and sodium azide (0.13 g, 1 mmol) were placed in one arm of a convection tube, and lead(II) nitrate (0.33 g, 1 mmol) and sodium nitrite (0.07 g, 1 mmol) in the other. Methanol was then added to fill both arms and the tube was sealed. The ligand-containing arm was immersed in an oil bath at 333 K, whereas the other was left at ambient temperature. After 1 day, crystals deposited in the arm that was kept at ambient temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H = 0.95 Å; U(H) = 1.2Ueq(C)] in the riding model approximation.

One of the two azide ions (N1, N2, N3) is disordered with respect to a nitrite ion (O1, O2, N3); the N3 atom is ordered. The N1 and O1 atoms occupy the same site; the atoms are give half occupancy and the same temperature factors. The N2 atom is disordered with respect to the O2 atom but they do not occupy the same site; their temperature factors were also restrained to be identical.

The final difference fourier map had a large peak/deep hole in the vicinity of the lead atom.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Pb2(N3)3(NO2)(C12H8NO)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry code: i = 1 - x, 1 - y, 1 - z.
catena-Poly[[(1,10-phenanthroline-κN,N')lead(II)]-µ- azido-κ2N1:N3-µ-nitrito- κ3O,O':O'-[(1,10-phenanthroline- κN,N')lead(II)]-di-µ-azido-κ4N1:N1] top
Crystal data top
[Pb2(N3)3(NO2)(C12H8N2)2]Z = 1
Mr = 946.89F(000) = 438
Triclinic, P1Dx = 2.475 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6860 (5) ÅCell parameters from 4831 reflections
b = 9.2056 (6) Åθ = 2.3–28.3°
c = 9.9080 (7) ŵ = 13.29 mm1
α = 90.541 (1)°T = 100 K
β = 109.665 (1)°Irregular, yellow
γ = 104.626 (1)°0.30 × 0.30 × 0.30 mm
V = 635.32 (7) Å3
Data collection top
Bruker SMART APEX
diffractometer
2888 independent reflections
Radiation source: fine-focus sealed tube2716 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.040, Tmax = 0.109k = 1111
6004 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0348P)2 + 1.3333P]
where P = (Fo2 + 2Fc2)/3
2888 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 2.17 e Å3
12 restraintsΔρmin = 1.97 e Å3
Crystal data top
[Pb2(N3)3(NO2)(C12H8N2)2]γ = 104.626 (1)°
Mr = 946.89V = 635.32 (7) Å3
Triclinic, P1Z = 1
a = 7.6860 (5) ÅMo Kα radiation
b = 9.2056 (6) ŵ = 13.29 mm1
c = 9.9080 (7) ÅT = 100 K
α = 90.541 (1)°0.30 × 0.30 × 0.30 mm
β = 109.665 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2888 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2716 reflections with I > 2σ(I)
Tmin = 0.040, Tmax = 0.109Rint = 0.033
6004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02812 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.03Δρmax = 2.17 e Å3
2888 reflectionsΔρmin = 1.97 e Å3
193 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.56829 (3)0.79283 (2)0.561361 (19)0.00881 (8)
O10.7795 (7)0.6258 (5)0.7489 (5)0.0169 (9)0.50
O20.5962 (13)0.4948 (9)0.5579 (9)0.0197 (14)0.50
N10.7795 (7)0.6258 (5)0.7489 (5)0.0169 (9)0.50
N20.7445 (16)0.3876 (12)0.6296 (11)0.0197 (14)0.50
N30.7470 (8)0.5047 (5)0.6855 (5)0.0156 (10)
N40.3085 (7)0.9214 (6)0.5147 (5)0.0168 (10)
N50.1522 (7)0.8609 (5)0.5166 (5)0.0136 (10)
N60.0006 (8)0.8055 (6)0.5194 (6)0.0260 (12)
N70.4053 (6)0.6818 (5)0.7324 (5)0.0090 (9)
N80.6931 (7)0.9476 (5)0.8019 (5)0.0085 (9)
C10.2609 (8)0.5559 (6)0.6968 (6)0.0124 (11)
H10.20330.51420.59880.015*
C20.1915 (8)0.4829 (6)0.7996 (7)0.0148 (11)
H20.09000.39240.77180.018*
C30.2717 (8)0.5438 (6)0.9397 (6)0.0138 (11)
H30.22540.49581.01010.017*
C40.4224 (8)0.6771 (6)0.9804 (6)0.0106 (10)
C50.4849 (8)0.7444 (6)0.8717 (6)0.0084 (10)
C60.5120 (8)0.7478 (6)1.1264 (6)0.0131 (11)
H60.47260.70081.20020.016*
C70.6505 (8)0.8794 (7)1.1603 (6)0.0132 (11)
H70.70650.92441.25720.016*
C80.7146 (7)0.9524 (6)1.0510 (6)0.0080 (10)
C90.6343 (7)0.8846 (6)0.9074 (6)0.0081 (10)
C100.8545 (8)1.0937 (6)1.0810 (6)0.0110 (11)
H100.91081.14331.17620.013*
C110.9080 (8)1.1579 (6)0.9729 (6)0.0115 (11)
H111.00021.25320.99110.014*
C120.8231 (8)1.0797 (6)0.8329 (6)0.0093 (10)
H120.86151.12430.75770.011*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01002 (12)0.00884 (11)0.00691 (11)0.00024 (7)0.00383 (8)0.00010 (7)
O10.017 (2)0.016 (2)0.017 (2)0.0021 (18)0.0072 (19)0.0037 (17)
O20.024 (4)0.018 (3)0.017 (3)0.004 (3)0.009 (3)0.004 (2)
N10.017 (2)0.016 (2)0.017 (2)0.0021 (18)0.0072 (19)0.0037 (17)
N20.024 (4)0.018 (3)0.017 (3)0.004 (3)0.009 (3)0.004 (2)
N30.021 (3)0.014 (2)0.012 (2)0.005 (2)0.006 (2)0.0002 (18)
N40.011 (3)0.025 (3)0.017 (3)0.007 (2)0.006 (2)0.008 (2)
N50.015 (3)0.017 (2)0.010 (2)0.006 (2)0.0042 (19)0.0014 (18)
N60.017 (3)0.027 (3)0.031 (3)0.002 (2)0.007 (2)0.004 (2)
N70.006 (2)0.010 (2)0.011 (2)0.0017 (17)0.0026 (18)0.0018 (17)
N80.009 (2)0.008 (2)0.007 (2)0.0025 (17)0.0007 (18)0.0018 (16)
C10.008 (3)0.012 (3)0.014 (3)0.001 (2)0.003 (2)0.002 (2)
C20.007 (3)0.012 (3)0.023 (3)0.002 (2)0.006 (2)0.002 (2)
C30.010 (3)0.013 (3)0.022 (3)0.003 (2)0.010 (2)0.004 (2)
C40.010 (3)0.012 (3)0.013 (3)0.006 (2)0.005 (2)0.002 (2)
C50.008 (3)0.010 (2)0.007 (2)0.004 (2)0.003 (2)0.0022 (19)
C60.016 (3)0.017 (3)0.010 (3)0.004 (2)0.008 (2)0.003 (2)
C70.014 (3)0.020 (3)0.008 (3)0.009 (2)0.004 (2)0.001 (2)
C80.003 (2)0.011 (2)0.010 (3)0.0033 (19)0.002 (2)0.0006 (19)
C90.005 (3)0.010 (2)0.010 (3)0.0045 (19)0.002 (2)0.0016 (19)
C100.007 (3)0.014 (3)0.011 (3)0.005 (2)0.001 (2)0.004 (2)
C110.007 (3)0.008 (2)0.016 (3)0.0001 (19)0.002 (2)0.002 (2)
C120.006 (3)0.009 (2)0.013 (3)0.0025 (19)0.004 (2)0.0006 (19)
Geometric parameters (Å, º) top
Pb1—N42.487 (5)C1—H10.9500
Pb1—N72.510 (4)C2—C31.363 (8)
Pb1—N82.517 (4)C2—H20.9500
Pb1—N2i2.642 (11)C3—C41.403 (8)
Pb1—O2i2.693 (8)C3—H30.9500
Pb1—N4ii2.764 (5)C4—C51.410 (8)
O1—N31.200 (6)C4—C61.441 (8)
O2—N31.382 (10)C5—C91.442 (7)
O2—Pb1i2.693 (8)C6—C71.347 (8)
N2—N31.200 (11)C6—H60.9500
N2—Pb1i2.642 (11)C7—C81.440 (8)
N4—N51.196 (7)C7—H70.9500
N4—Pb1ii2.764 (5)C8—C91.412 (7)
N5—N61.166 (7)C8—C101.417 (7)
N7—C11.334 (7)C10—C111.360 (8)
N7—C51.360 (7)C10—H100.9500
N8—C121.321 (7)C11—C121.416 (7)
N8—C91.353 (7)C11—H110.9500
C1—C21.404 (8)C12—H120.9500
N4—Pb1—N778.10 (15)C3—C2—C1119.1 (5)
N4—Pb1—N882.36 (16)C3—C2—H2120.4
N7—Pb1—N866.32 (15)C1—C2—H2120.4
N4—Pb1—N2i72.7 (3)C2—C3—C4120.3 (5)
N7—Pb1—N2i81.9 (3)C2—C3—H3119.9
N8—Pb1—N2i143.0 (2)C4—C3—H3119.9
N4—Pb1—O2i107.5 (2)C3—C4—C5117.6 (5)
N7—Pb1—O2i78.2 (2)C3—C4—C6123.0 (5)
N8—Pb1—O2i140.5 (2)C5—C4—C6119.4 (5)
N2i—Pb1—O2i36.6 (3)N7—C5—C4121.6 (5)
N4—Pb1—N4ii70.67 (18)N7—C5—C9118.7 (5)
N7—Pb1—N4ii135.88 (14)C4—C5—C9119.6 (5)
N8—Pb1—N4ii79.09 (15)C7—C6—C4121.3 (5)
N2i—Pb1—N4ii116.0 (3)C7—C6—H6119.4
O2i—Pb1—N4ii140.4 (2)C4—C6—H6119.4
N3—O2—Pb1i111.5 (5)C6—C7—C8120.5 (5)
N3—N2—Pb1i123.2 (7)C6—C7—H7119.7
O1—N3—N2170.0 (8)C8—C7—H7119.7
O1—N3—O2107.1 (5)C9—C8—C10117.7 (5)
N2—N3—O280.7 (7)C9—C8—C7119.9 (5)
N5—N4—Pb1123.2 (4)C10—C8—C7122.4 (5)
N5—N4—Pb1ii127.3 (4)N8—C9—C8121.9 (5)
Pb1—N4—Pb1ii109.33 (18)N8—C9—C5118.9 (5)
N6—N5—N4178.2 (6)C8—C9—C5119.2 (5)
C1—N7—C5119.3 (5)C11—C10—C8119.7 (5)
C1—N7—Pb1123.0 (4)C11—C10—H10120.2
C5—N7—Pb1117.2 (3)C8—C10—H10120.2
C12—N8—C9119.0 (4)C10—C11—C12118.6 (5)
C12—N8—Pb1123.5 (3)C10—C11—H11120.7
C9—N8—Pb1117.2 (3)C12—C11—H11120.7
N7—C1—C2122.0 (5)N8—C12—C11123.0 (5)
N7—C1—H1119.0N8—C12—H12118.5
C2—C1—H1119.0C11—C12—H12118.5
Pb1i—N2—N3—O1169 (4)N7—C1—C2—C31.1 (9)
Pb1i—N2—N3—O227.1 (7)C1—C2—C3—C40.4 (8)
Pb1i—O2—N3—O1162.7 (4)C2—C3—C4—C50.4 (8)
Pb1i—O2—N3—N223.7 (7)C2—C3—C4—C6179.4 (5)
N7—Pb1—N4—N536.2 (4)C1—N7—C5—C41.9 (8)
N8—Pb1—N4—N5103.5 (5)Pb1—N7—C5—C4170.4 (4)
N2i—Pb1—N4—N548.8 (5)C1—N7—C5—C9176.9 (5)
O2i—Pb1—N4—N537.2 (5)Pb1—N7—C5—C910.8 (6)
N4ii—Pb1—N4—N5175.4 (6)C3—C4—C5—N71.2 (8)
N7—Pb1—N4—Pb1ii148.4 (2)C6—C4—C5—N7179.8 (5)
N8—Pb1—N4—Pb1ii81.06 (19)C3—C4—C5—C9177.6 (5)
N2i—Pb1—N4—Pb1ii126.5 (3)C6—C4—C5—C91.4 (8)
O2i—Pb1—N4—Pb1ii138.2 (2)C3—C4—C6—C7177.0 (6)
N4ii—Pb1—N4—Pb1ii0.0C5—C4—C6—C72.0 (8)
N4—Pb1—N7—C190.6 (4)C4—C6—C7—C80.7 (8)
N8—Pb1—N7—C1177.4 (5)C6—C7—C8—C91.2 (8)
N2i—Pb1—N7—C116.7 (5)C6—C7—C8—C10177.5 (5)
O2i—Pb1—N7—C120.3 (4)C12—N8—C9—C83.1 (7)
N4ii—Pb1—N7—C1135.9 (4)Pb1—N8—C9—C8171.4 (4)
N4—Pb1—N7—C597.4 (4)C12—N8—C9—C5176.7 (5)
N8—Pb1—N7—C510.6 (3)Pb1—N8—C9—C58.8 (6)
N2i—Pb1—N7—C5171.3 (4)C10—C8—C9—N82.7 (7)
O2i—Pb1—N7—C5151.7 (4)C7—C8—C9—N8178.6 (5)
N4ii—Pb1—N7—C552.1 (4)C10—C8—C9—C5177.0 (5)
N4—Pb1—N8—C1295.5 (4)C7—C8—C9—C51.7 (7)
N7—Pb1—N8—C12175.8 (4)N7—C5—C9—N81.3 (7)
N2i—Pb1—N8—C12142.9 (5)C4—C5—C9—N8179.9 (5)
O2i—Pb1—N8—C12156.2 (4)N7—C5—C9—C8178.4 (5)
N4ii—Pb1—N8—C1223.8 (4)C4—C5—C9—C80.4 (7)
N4—Pb1—N8—C990.3 (4)C9—C8—C10—C110.6 (7)
N7—Pb1—N8—C910.0 (3)C7—C8—C10—C11179.3 (5)
N2i—Pb1—N8—C942.9 (6)C8—C10—C11—C120.9 (8)
O2i—Pb1—N8—C918.0 (5)C9—N8—C12—C111.4 (8)
N4ii—Pb1—N8—C9161.9 (4)Pb1—N8—C12—C11172.7 (4)
C5—N7—C1—C21.8 (8)C10—C11—C12—N80.6 (8)
Pb1—N7—C1—C2170.0 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Pb2(N3)3(NO2)(C12H8N2)2]
Mr946.89
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.6860 (5), 9.2056 (6), 9.9080 (7)
α, β, γ (°)90.541 (1), 109.665 (1), 104.626 (1)
V3)635.32 (7)
Z1
Radiation typeMo Kα
µ (mm1)13.29
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.040, 0.109
No. of measured, independent and
observed [I > 2σ(I)] reflections
6004, 2888, 2716
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 1.03
No. of reflections2888
No. of parameters193
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.17, 1.97

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Shahid Beheshti University (project No. 600/2097) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMarandi, F., Mirtamizdoust, B., Chantrapromma, S. & Fun, H.-K. (2007). Z. Anorg. Allg. Chem. 633, 1329–1332.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds