organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro-3-(4-fluoro­phenyl­sulfin­yl)-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 5 June 2010; accepted 8 June 2010; online 16 June 2010)

In the title compound, C15H10F2O2S, the S=O and the 4-fluoro­phenyl groups are located on opposite sides of the plane of benzofuran ring system, and the 4-fluoro­phenyl ring is nearly perpendicular to the benzofuran plane with a dihedral angle of 89.93 (4)°. In the crystal structure, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonding and C—H⋯π inter­actions.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the structures of related 3-(4-fluoro­phenyl­sulfin­yl)-2-methyl-1-benzofuran deriv­atives, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o543.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1297.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10F2O2S

  • Mr = 292.29

  • Orthorhombic, P b c n

  • a = 14.9369 (4) Å

  • b = 10.6284 (3) Å

  • c = 16.1532 (4) Å

  • V = 2564.41 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 174 K

  • 0.40 × 0.32 × 0.28 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.898, Tmax = 0.927

  • 22576 measured reflections

  • 2962 independent reflections

  • 2578 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.091

  • S = 1.08

  • 2962 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the furan ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O2i 0.98 2.45 3.200 (2) 133
C14—H14⋯O2ii 0.95 2.55 3.270 (2) 133
C15—H15⋯Cgii 0.95 2.98 3.828 (2) 149
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The compounds containing benzofuran skeleton exhibit diverse pharmacological properties such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), antimicrobial (Khan et al., 2005) activities. These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 3-(4-fluorophenylsulfinyl)-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.012 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is almost perpendicular to the plane of the benzofuran fragment [89.93 (4)°] and is tilted slightly towards it. The crystal packing (Fig. 2) is stabilized by weak intermolecular C–H···O hydrogen bonds; the first one between the methyl H atom and the oxygen of the SO unit, with a C9–H9B···O2i, and the second one between the 4-fluorophenyl H atom and the oxygen of the SO unit, with a C14–H14···O2ii, respectively (Table 1). The molecular packing (Fig. 2) is further stabilized by a C–H···π interaction between the 4-fluorophenyl H atom and the furan ring of an adjacent benzofuran system, with a C15–H15···Cg ii(Table 1; Cg is the centroid of the C1/C2/C7/O1/C8 furan ring).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structures of related 3-(4-fluorophenylsulfinyl)-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a,b).

Experimental top

77% 3-Chloroperoxybenzoic acid (291 mg, 1.3 mmol) was added in small portions to a stirred solution of 5-fluoro-3-(4-fluorophenylsulfanyl)-2-methyl-1-benzofuran (350 mg, 1.2 mmol) in dichloromethane (30 ml) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution, the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 78%, m.p. 418-419 K; Rf = 0.49 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C–H···O and C–H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) - x + 3/2, y - 1/2, z; (ii) - x +3/2, y + 1/2, z.]
5-Fluoro-3-(4-fluorophenylsulfinyl)-2-methyl-1-benzofuran top
Crystal data top
C15H10F2O2SF(000) = 1200
Mr = 292.29Dx = 1.514 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 9962 reflections
a = 14.9369 (4) Åθ = 2.4–27.6°
b = 10.6284 (3) ŵ = 0.27 mm1
c = 16.1532 (4) ÅT = 174 K
V = 2564.41 (12) Å3Block, colourless
Z = 80.40 × 0.32 × 0.28 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2962 independent reflections
Radiation source: rotating anode2578 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.029
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 2.4°
ϕ and ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1311
Tmin = 0.898, Tmax = 0.927l = 1821
22576 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.984P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2962 reflectionsΔρmax = 0.29 e Å3
183 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0035 (5)
Crystal data top
C15H10F2O2SV = 2564.41 (12) Å3
Mr = 292.29Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 14.9369 (4) ŵ = 0.27 mm1
b = 10.6284 (3) ÅT = 174 K
c = 16.1532 (4) Å0.40 × 0.32 × 0.28 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2962 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2578 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.927Rint = 0.029
22576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.08Δρmax = 0.29 e Å3
2962 reflectionsΔρmin = 0.32 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.66618 (2)0.39412 (3)0.07071 (2)0.02868 (12)
F10.74089 (8)0.39246 (10)0.42659 (5)0.0468 (3)
F20.43716 (7)0.81769 (9)0.16672 (7)0.0533 (3)
O10.59409 (7)0.09156 (9)0.19275 (6)0.0308 (2)
O20.76049 (7)0.43398 (11)0.08603 (7)0.0371 (3)
C10.63924 (9)0.27918 (12)0.14445 (8)0.0257 (3)
C20.65824 (8)0.27675 (12)0.23194 (8)0.0244 (3)
C30.69806 (9)0.35842 (13)0.28866 (9)0.0287 (3)
H30.71980.43900.27300.034*
C40.70389 (10)0.31507 (14)0.36869 (9)0.0317 (3)
C50.67501 (10)0.19769 (15)0.39509 (9)0.0334 (3)
H50.68170.17350.45140.040*
C60.63635 (10)0.11614 (13)0.33859 (9)0.0318 (3)
H60.61590.03500.35440.038*
C70.62909 (8)0.15881 (12)0.25823 (8)0.0265 (3)
C80.60257 (9)0.16619 (13)0.12435 (9)0.0287 (3)
C90.57225 (10)0.11157 (15)0.04501 (10)0.0379 (4)
H9A0.50680.10580.04480.057*
H9B0.59790.02730.03840.057*
H9C0.59190.16540.00080.057*
C100.59618 (9)0.51953 (13)0.10727 (8)0.0275 (3)
C110.50426 (10)0.50221 (15)0.11532 (10)0.0354 (3)
H110.47860.42150.10660.043*
C120.45059 (10)0.60330 (15)0.13609 (11)0.0401 (4)
H120.38770.59340.14230.048*
C130.49058 (11)0.71859 (14)0.14756 (10)0.0364 (3)
C140.58090 (11)0.73846 (14)0.13999 (10)0.0391 (4)
H140.60610.81950.14880.047*
C150.63445 (10)0.63648 (14)0.11909 (9)0.0342 (3)
H150.69720.64710.11290.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03005 (19)0.0329 (2)0.02308 (18)0.00313 (13)0.00015 (12)0.00211 (12)
F10.0588 (6)0.0527 (6)0.0289 (5)0.0174 (5)0.0098 (4)0.0059 (4)
F20.0614 (6)0.0369 (5)0.0617 (7)0.0204 (5)0.0077 (5)0.0049 (5)
O10.0328 (5)0.0259 (5)0.0338 (5)0.0047 (4)0.0004 (4)0.0046 (4)
O20.0271 (5)0.0422 (6)0.0421 (6)0.0011 (4)0.0044 (4)0.0098 (5)
C10.0250 (6)0.0265 (6)0.0257 (6)0.0018 (5)0.0009 (5)0.0013 (5)
C20.0227 (6)0.0250 (6)0.0256 (6)0.0021 (5)0.0002 (5)0.0009 (5)
C30.0305 (7)0.0261 (6)0.0294 (7)0.0034 (5)0.0007 (5)0.0014 (5)
C40.0312 (7)0.0363 (7)0.0275 (7)0.0027 (6)0.0048 (5)0.0038 (6)
C50.0342 (7)0.0388 (8)0.0273 (7)0.0008 (6)0.0016 (6)0.0063 (6)
C60.0331 (7)0.0272 (7)0.0352 (8)0.0009 (5)0.0024 (6)0.0053 (6)
C70.0248 (6)0.0244 (6)0.0302 (7)0.0002 (5)0.0003 (5)0.0031 (5)
C80.0256 (6)0.0302 (7)0.0302 (7)0.0024 (5)0.0005 (5)0.0039 (5)
C90.0349 (8)0.0414 (8)0.0373 (8)0.0003 (6)0.0064 (6)0.0134 (6)
C100.0292 (6)0.0289 (7)0.0244 (6)0.0016 (5)0.0027 (5)0.0035 (5)
C110.0285 (6)0.0306 (7)0.0471 (9)0.0018 (6)0.0034 (6)0.0011 (6)
C120.0295 (7)0.0414 (9)0.0493 (10)0.0042 (6)0.0001 (7)0.0055 (7)
C130.0435 (8)0.0303 (7)0.0352 (8)0.0101 (6)0.0008 (6)0.0064 (6)
C140.0477 (9)0.0267 (7)0.0429 (9)0.0032 (6)0.0018 (7)0.0028 (6)
C150.0318 (7)0.0334 (7)0.0374 (8)0.0051 (6)0.0005 (6)0.0041 (6)
Geometric parameters (Å, º) top
S1—O21.492 (1)C6—C71.379 (2)
S1—C11.753 (1)C6—H60.9500
S1—C101.794 (1)C8—C91.478 (2)
F1—C41.363 (2)C9—H9A0.9800
F2—C131.357 (2)C9—H9B0.9800
O1—C81.366 (2)C9—H9C0.9800
O1—C71.379 (2)C10—C151.381 (2)
C1—C81.359 (2)C10—C111.391 (2)
C1—C21.442 (2)C11—C121.382 (2)
C2—C71.393 (2)C11—H110.9500
C2—C31.395 (2)C12—C131.376 (2)
C3—C41.375 (2)C12—H120.9500
C3—H30.9500C13—C141.371 (2)
C4—C51.387 (2)C14—C151.389 (2)
C5—C61.385 (2)C14—H140.9500
C5—H50.9500C15—H150.9500
O2—S1—C1107.57 (6)C1—C8—C9132.66 (14)
O2—S1—C10106.55 (7)O1—C8—C9116.41 (13)
C1—S1—C1099.22 (6)C8—C9—H9A109.5
C8—O1—C7106.51 (10)C8—C9—H9B109.5
C8—C1—C2107.32 (12)H9A—C9—H9B109.5
C8—C1—S1123.09 (10)C8—C9—H9C109.5
C2—C1—S1129.30 (10)H9A—C9—H9C109.5
C7—C2—C3119.53 (12)H9B—C9—H9C109.5
C7—C2—C1104.67 (11)C15—C10—C11120.97 (13)
C3—C2—C1135.77 (13)C15—C10—S1118.22 (11)
C4—C3—C2115.84 (13)C11—C10—S1120.50 (11)
C4—C3—H3122.1C12—C11—C10119.48 (14)
C2—C3—H3122.1C12—C11—H11120.3
F1—C4—C3117.95 (13)C10—C11—H11120.3
F1—C4—C5117.26 (13)C13—C12—C11118.25 (14)
C3—C4—C5124.79 (13)C13—C12—H12120.9
C6—C5—C4119.34 (13)C11—C12—H12120.9
C6—C5—H5120.3F2—C13—C14118.64 (14)
C4—C5—H5120.3F2—C13—C12117.82 (14)
C7—C6—C5116.56 (13)C14—C13—C12123.53 (14)
C7—C6—H6121.7C13—C14—C15117.92 (14)
C5—C6—H6121.7C13—C14—H14121.0
C6—C7—O1125.52 (12)C15—C14—H14121.0
C6—C7—C2123.92 (13)C10—C15—C14119.84 (14)
O1—C7—C2110.55 (12)C10—C15—H15120.1
C1—C8—O1110.93 (12)C14—C15—H15120.1
O2—S1—C1—C8129.33 (12)C1—C2—C7—O10.14 (14)
C10—S1—C1—C8119.93 (12)C2—C1—C8—O11.61 (15)
O2—S1—C1—C243.56 (14)S1—C1—C8—O1175.85 (9)
C10—S1—C1—C267.18 (13)C2—C1—C8—C9177.80 (14)
C8—C1—C2—C70.87 (14)S1—C1—C8—C93.6 (2)
S1—C1—C2—C7174.64 (10)C7—O1—C8—C11.69 (15)
C8—C1—C2—C3176.94 (15)C7—O1—C8—C9177.83 (12)
S1—C1—C2—C33.2 (2)O2—S1—C10—C1517.87 (13)
C7—C2—C3—C41.17 (19)C1—S1—C10—C15129.42 (12)
C1—C2—C3—C4178.74 (14)O2—S1—C10—C11168.52 (11)
C2—C3—C4—F1178.89 (12)C1—S1—C10—C1156.97 (13)
C2—C3—C4—C51.3 (2)C15—C10—C11—C120.5 (2)
F1—C4—C5—C6179.52 (13)S1—C10—C11—C12173.95 (12)
C3—C4—C5—C60.7 (2)C10—C11—C12—C130.4 (2)
C4—C5—C6—C70.1 (2)C11—C12—C13—F2179.03 (14)
C5—C6—C7—O1178.89 (12)C11—C12—C13—C140.4 (3)
C5—C6—C7—C20.2 (2)F2—C13—C14—C15179.02 (14)
C8—O1—C7—C6177.78 (13)C12—C13—C14—C150.4 (2)
C8—O1—C7—C21.10 (14)C11—C10—C15—C140.5 (2)
C3—C2—C7—C60.5 (2)S1—C10—C15—C14174.11 (12)
C1—C2—C7—C6178.75 (13)C13—C14—C15—C100.5 (2)
C3—C2—C7—O1178.39 (11)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the furan ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.982.453.200 (2)133
C14—H14···O2ii0.952.553.270 (2)133
C15—H15···Cgii0.952.983.828 (2)149
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H10F2O2S
Mr292.29
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)174
a, b, c (Å)14.9369 (4), 10.6284 (3), 16.1532 (4)
V3)2564.41 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.40 × 0.32 × 0.28
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.898, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
22576, 2962, 2578
Rint0.029
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.091, 1.08
No. of reflections2962
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the furan ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.982.453.200 (2)132.7
C14—H14···O2ii0.952.553.270 (2)133.1
C15—H15···Cgii0.952.983.828 (2)148.9
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+3/2, y+1/2, z.
 

Acknowledgements

This work was supported by a Dong-eui University grant (2010AA096).

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds