metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m857-m858

trans-Tetra­kis(4-methyl­pyridine-κN)dioxidorhenium(V) hexa­fluorido­phosphate

aResearch Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-34 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
*Correspondence e-mail: yikeda@nr.titech.ac.jp

(Received 16 June 2010; accepted 23 June 2010; online 26 June 2010)

The title compound, [ReO2(C6H7N)4]PF6, contains octa­hedral [ReO2(4-Mepy)4]+ cations (4-Mepy is 4-methyl­pyridine) and PF6 anions. Both the cation and the anion reside on special positions, the Re atom on a crystallographic center of inversion and the P atom on a C2 axis parallel to the b axis. The ReV atom in the cation exhibits an octa­hedral coordination geometry with two O atoms in the apical positions and four N atoms of the 4-Mepy ligands in the equatorial plane. The Re=O and Re—N bond lengths fall in the typical ranges of trans-dioxidorhenium(V) complexes.

Related literature

For rhenium(V) complexes as radiopharmaceuticals, see: Dilworth & Parrott (1998[Dilworth, J. R. & Parrott, S. J. (1998). Chem. Soc. Rev. 27, 43-55.]); Volkert & Hoffman (1999[Volkert, W. A. & Hoffman, T. J. (1999). Chem. Rev. 99, 2269-2292.]). trans-Dioxidorhenium(V) ReO2+ complexes exhibit inter­esting properties as redox- and photo-active catalysts, see: Grey et al. (2004[Grey, J. K., Butler, I. S. & Reber, C. (2004). Can. J. Chem. 82, 1083-1091.]); Pipes & Meyer (1985[Pipes, D. W. & Meyer, T. J. (1985). J. Am. Chem. Soc. 107, 7201-7202.]); Thorp et al. (1989[Thorp, H. H., Houten, J. V. & Gray, H. B. (1989). Inorg. Chem. 28, 889-892.]). For the synthesis of the title compound, see: Brewer & Gray (1989[Brewer, J. C. & Gray, H. B. (1989). Inorg. Chem. 28, 3334-3336.]). For the crystal structures of trans-dioxidorhenium(V) complexes, see: Bélanger & Beauchamp (1996[Bélanger, S. & Beauchamp, A. L. (1996). Inorg. Chem. 35, 7836-7844.]); Canlier et al. (2010[Canlier, A., Kawasaki, T., Chowdhury, S. & Ikeda, Y. (2010). Inorg. Chim. Acta, 363, 1-7.]); Gancheff et al. (2006[Gancheff, J. S., Kremer, C., Ventura, O. N., Domínguez, S., Bazzicalupi, C., Bianchi, A., Suescun, L. & Mombrú, A. W. (2006). New J. Chem. 30, 1650-1654.]); Kochel (2006[Kochel, A. (2006). Acta Cryst. E62, m1740-m1742.]); Kremer et al. (1996[Kremer, C., Kremer, E., Domínguez, S., Chinea, E., Mederos, A. & Castiñeiras, A. (1996). Polyhedron, 15, 4341-4347.]); Machura et al. (2008[Machura, B., Kruszynski, R., Penczek, R., Mroziński, J. & Kusz, J. (2008). Polyhedron, 27, 797-804.]); Luck & O'Neill (2001[Luck, R. L. & O'Neill, R. S. (2001). Polyhedron, 20, 773-782.]); Reddy et al. (1999[Reddy, K. R., Domingos, Â., Paulo, A. & Santos, I. (1999). Inorg. Chem. 38, 4278-4282.]); Siczek et al. (2009[Siczek, M., Krawczyk, M. S. & Lis, T. (2009). Acta Cryst. E65, m1057.]).

[Scheme 1]

Experimental

Crystal data
  • [ReO2(C6H7N)4]PF6

  • Mr = 735.68

  • Monoclinic, C 2/c

  • a = 10.4914 (4) Å

  • b = 19.5359 (8) Å

  • c = 14.0923 (5) Å

  • β = 109.5810 (11)°

  • V = 2721.31 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.60 mm−1

  • T = 173 K

  • 0.26 × 0.13 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.354, Tmax = 0.576

  • 12743 measured reflections

  • 3113 independent reflections

  • 2556 reflections with F2 > 2σ(F2)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.044

  • S = 1.16

  • 3113 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected geometric parameters (Å, °)

Re1—O1 1.7688 (19)
Re1—N1 2.147 (2)
Re1—N2 2.146 (2)
O1—Re1—O1i 180.00 (12)
O1—Re1—N1 90.33 (9)
O1—Re1—N2 90.35 (8)
N1—Re1—N2 90.20 (8)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (CrystalMaker, 2007[CrystalMaker (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

Rhenium(V) complexes as radiopharmaceuticals for therapy and diagnosis continue to attract attention, because rhenium isotopes have suitable radionuclear properties for the applications, i.e., 186Re: Emax = 1.1 MeV for β-emission and Emax = 0.137 MeV for γ-emission with t1/2 = 90.6 h, 188Re: Emax = 2.1 MeV for β-emission and Emax = 0.155 MeV for γ-emission with t1/2 = 17 h (Dilworth & Parrott, 1998; Volkert & Hoffman, 1999). On the other hand, trans-dioxorhenium(V) ReO2+ complexes have been known to exhibit interesting properties as redox- and photo-active catalysts (Grey et al., 2004; Pipes & Meyer, 1985; Thorp et al.,1989). To our knowledge, the title compound of formula [ReO2(4-Mepy)4]+.PF6- (4-Mepy = 4-methylpyridine) (I) was already synthesized by Brewer & Gray (Brewer & Gray, 1989), but a crystallographic characterization has not been yet reported. In this article, we report the X-ray crystal structure of the title compound.

Complex I crystallized in the centrosymmetric space group C2/c. The crystal structure is constructed by the packing of [ReO2(4-Mepy)4]+ cations and octahedral PF6- anions as shown Figs. 1 and 2. The Re atom is located on a crystallographic center of inversion and the P atom lies on a C2 axis parallel to the b axis. The ReV atom in the cation exhibits an octahedral coordination geometry with two O atoms in the apical positions and four N atoms of the 4-Mepy ligands in the equatorial plane. The ReO and Re—N bond lengths fall in the typical ranges of trans-dioxorhenium(V) complexes. No classical hydrogen bonds are observed in the crystal structure. The N1—Re1—N2 bond angle and all N—Re1O angles are almost 90 °. The bond lengths of Re1—O1N, Re1—N1, and Re1—N2 are 1.769 (2), 2.147 (2) and 2.146 (2) Å, respectively. These values are similar to those found for other trans-dioxorhenium(V) complexes (Bélanger & Beauchamp, 1996; Canlier et al., 2010; Gancheff et al., 2006; Kochel, 2006; Kremer et al., 1996; Machura et al., 2008; Luck & O'Neill, 2001; Reddy et al., 1999; Siczek et al., 2009).

Related literature top

For rhenium(V) complexes as radiopharmaceuticals, see: Dilworth & Parrott (1998); Volkert & Hoffman (1999). For the use of trans-dioxorhenium(V) ReO2+ complexes have been known to exhibit interesting properties as redox- and photo-active catalysts, see: Grey et al. (2004); Pipes & Meyer (1985); Thorp et al. (1989). For the synthesis of the title compound, see: Brewer & Gray (1989). For the crystal structures of trans-dioxorhenium(V) complexes, see: Bélanger & Beauchamp (1996); Canlier et al. (2010); Gancheff et al. (2006); Kochel (2006); Kremer et al. (1996); Machura et al. (2008); Luck & O'Neill (2001); Reddy et al. (1999); Siczek et al. (2009).

Experimental top

The title complex was synthesized according to the literature method by Brewer & Gray (Brewer & Gray, 1989). [ReO2(PPh3)2]I was reacted with 4-Mepy in methanol and the resulting [ReO2(4-Mepy)4]I was reacted with NH4PF6 in methanol.

Refinement top

All H atoms were positionated geometrically, with C—H = 0.95 and 0.98 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2007); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. View of the [ReO2(4-Mepy)4]+ cation and PF6- anion with 50% thermal ellipsoids. Hydrogen atoms are omitted clarity.
[Figure 2] Fig. 2. Packing view of the [ReO2(4-Mepy)4]+ (stick) and PF6- (octahedron) along the c axis.
trans-Tetrakis(4-methylpyridine-κN)dioxidorhenium(V) hexafluoridophosphate top
Crystal data top
[ReO2(C6H7N)4]PF6F(000) = 1440.00
Mr = 735.68Dx = 1.796 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 13289 reflections
a = 10.4914 (4) Åθ = 3.1–27.4°
b = 19.5359 (8) ŵ = 4.60 mm1
c = 14.0923 (5) ÅT = 173 K
β = 109.5810 (11)°Block, orange
V = 2721.31 (18) Å30.26 × 0.13 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3113 independent reflections
Radiation source: fine-focus sealed tube2556 reflections with F2 > 2σ(F2)
Graphite monochromatorRint = 0.021
Detector resolution: 10.00 pixels mm-1θmax = 27.4°
ω scansh = 1213
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2525
Tmin = 0.354, Tmax = 0.576l = 1818
12743 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.044H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0157P)2 + 6.0203P]
where P = (Fo2 + 2Fc2)/3
3113 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.39 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[ReO2(C6H7N)4]PF6V = 2721.31 (18) Å3
Mr = 735.68Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.4914 (4) ŵ = 4.60 mm1
b = 19.5359 (8) ÅT = 173 K
c = 14.0923 (5) Å0.26 × 0.13 × 0.12 mm
β = 109.5810 (11)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3113 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2556 reflections with F2 > 2σ(F2)
Tmin = 0.354, Tmax = 0.576Rint = 0.021
12743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.044H-atom parameters constrained
S = 1.16Δρmax = 0.46 e Å3
3113 reflectionsΔρmin = 0.39 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.75000.25000.50000.02256 (4)
P10.50000.04791 (6)0.75000.0334 (2)
F10.5776 (2)0.10485 (15)0.8276 (2)0.0838 (8)
F20.6185 (2)0.04807 (14)0.70289 (19)0.0670 (6)
F30.4238 (3)0.00954 (16)0.6730 (2)0.0962 (10)
O10.90491 (19)0.29340 (10)0.52054 (14)0.0268 (4)
N10.7527 (2)0.27819 (12)0.64789 (17)0.0257 (4)
N20.8575 (2)0.15747 (12)0.55935 (16)0.0249 (4)
C10.6844 (3)0.24197 (16)0.6970 (2)0.0311 (6)
C20.6861 (3)0.25974 (15)0.7926 (2)0.0331 (6)
C30.7583 (3)0.31654 (15)0.8417 (2)0.0311 (6)
C40.8272 (3)0.35354 (15)0.7905 (2)0.0319 (6)
C50.8225 (2)0.33362 (15)0.6953 (2)0.0294 (5)
C60.7652 (3)0.33635 (18)0.9466 (2)0.0440 (8)
C70.9942 (3)0.15588 (16)0.5950 (2)0.0331 (6)
C81.0667 (3)0.09651 (17)0.6268 (2)0.0372 (6)
C91.0011 (3)0.03451 (16)0.6232 (2)0.0323 (6)
C100.8602 (3)0.03686 (16)0.5894 (2)0.0365 (6)
C110.7926 (3)0.09779 (15)0.5586 (2)0.0313 (6)
C121.0782 (3)0.03129 (17)0.6533 (2)0.0418 (7)
H10.63370.20310.66500.037*
H20.63730.23280.82490.040*
H40.87800.39280.82090.038*
H50.87040.36000.66170.035*
H6A0.71070.30440.97060.053*
H6B0.72990.38290.94580.053*
H6C0.85940.33470.99160.053*
H71.04230.19750.59820.040*
H81.16280.09810.65140.045*
H100.81020.00400.58760.044*
H110.69650.09770.53600.038*
H12A1.01440.06930.64530.050*
H12B1.13700.02840.72380.050*
H12C1.13340.03910.61030.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01850 (7)0.02494 (7)0.02294 (7)0.00157 (8)0.00521 (5)0.00297 (7)
P10.0302 (5)0.0239 (5)0.0474 (6)0.00000.0145 (4)0.0000
F10.0809 (19)0.0820 (19)0.0810 (18)0.0331 (15)0.0174 (14)0.0387 (15)
F20.0484 (13)0.0881 (18)0.0769 (15)0.0047 (12)0.0375 (12)0.0053 (14)
F30.095 (2)0.084 (2)0.127 (2)0.0475 (17)0.0597 (19)0.0657 (18)
O10.0204 (9)0.0301 (10)0.0288 (9)0.0027 (7)0.0066 (7)0.0020 (8)
N10.0213 (11)0.0257 (10)0.0284 (11)0.0004 (9)0.0062 (9)0.0022 (9)
N20.0233 (11)0.0277 (11)0.0229 (10)0.0007 (9)0.0065 (8)0.0027 (8)
C10.0310 (13)0.0327 (16)0.0304 (13)0.0047 (12)0.0110 (10)0.0022 (12)
C20.0357 (15)0.0348 (18)0.0317 (13)0.0025 (12)0.0150 (11)0.0065 (12)
C30.0330 (15)0.0319 (15)0.0272 (13)0.0116 (12)0.0084 (11)0.0046 (11)
C40.0310 (15)0.0281 (14)0.0333 (14)0.0021 (12)0.0062 (11)0.0013 (11)
C50.0275 (14)0.0303 (14)0.0295 (13)0.0015 (11)0.0084 (11)0.0029 (11)
C60.063 (2)0.0379 (17)0.0343 (16)0.0082 (16)0.0204 (15)0.0007 (13)
C70.0248 (14)0.0338 (15)0.0378 (15)0.0013 (12)0.0066 (11)0.0063 (12)
C80.0242 (14)0.0424 (17)0.0413 (16)0.0057 (13)0.0062 (12)0.0076 (13)
C90.0362 (16)0.0335 (15)0.0267 (13)0.0085 (12)0.0099 (11)0.0030 (11)
C100.0362 (16)0.0288 (15)0.0425 (16)0.0022 (13)0.0106 (13)0.0028 (12)
C110.0250 (14)0.0326 (15)0.0344 (15)0.0008 (12)0.0073 (11)0.0039 (12)
C120.0445 (19)0.0348 (17)0.0448 (18)0.0137 (14)0.0135 (14)0.0044 (14)
Geometric parameters (Å, º) top
Re1—O11.7688 (19)C4—C51.382 (4)
Re1—O1i1.7688 (19)C7—C81.377 (4)
Re1—N12.147 (2)C8—C91.386 (4)
Re1—N1i2.147 (2)C9—C101.394 (4)
Re1—N22.146 (2)C9—C121.502 (4)
Re1—N2i2.146 (2)C10—C111.379 (4)
P1—F11.581 (2)C1—H10.950
P1—F1ii1.581 (2)C2—H20.950
P1—F21.593 (2)C4—H40.950
P1—F2ii1.593 (2)C5—H50.950
P1—F31.579 (3)C6—H6A0.980
P1—F3ii1.579 (3)C6—H6B0.980
N1—C11.351 (4)C6—H6C0.980
N1—C51.352 (3)C7—H70.950
N2—C71.352 (3)C8—H80.950
N2—C111.348 (3)C10—H100.950
C1—C21.386 (4)C11—H110.950
C2—C31.390 (3)C12—H12A0.980
C3—C41.384 (4)C12—H12B0.980
C3—C61.506 (4)C12—H12C0.980
O1—Re1—O1i180.00 (12)C2—C3—C6122.2 (3)
O1—Re1—N190.33 (9)C4—C3—C6121.1 (2)
O1—Re1—N1i89.67 (9)C3—C4—C5120.3 (2)
O1—Re1—N290.35 (8)N1—C5—C4122.9 (2)
O1—Re1—N2i89.65 (8)N2—C7—C8122.8 (2)
O1i—Re1—N189.67 (9)C7—C8—C9120.7 (2)
O1i—Re1—N1i90.33 (9)C8—C9—C10116.2 (2)
O1i—Re1—N289.65 (8)C8—C9—C12121.6 (2)
O1i—Re1—N2i90.35 (8)C10—C9—C12122.2 (2)
N1—Re1—N1i180.00 (12)C9—C10—C11120.7 (2)
N1—Re1—N290.20 (8)N2—C11—C10122.6 (2)
N1—Re1—N2i89.80 (8)N1—C1—H1119.0
N1i—Re1—N289.80 (8)C2—C1—H1119.0
N1i—Re1—N2i90.20 (8)C1—C2—H2119.6
N2—Re1—N2i180.00 (12)C3—C2—H2119.6
F1—P1—F1ii90.54 (15)C3—C4—H4119.9
F1—P1—F289.65 (15)C5—C4—H4119.9
F1—P1—F2ii90.19 (15)N1—C5—H5118.6
F1—P1—F3179.37 (16)C4—C5—H5118.6
F1—P1—F3ii90.02 (14)C3—C6—H6A109.5
F1ii—P1—F290.19 (15)C3—C6—H6B109.5
F1ii—P1—F2ii89.65 (15)C3—C6—H6C109.5
F1ii—P1—F390.02 (14)H6A—C6—H6B109.5
FPii—P1—F3ii179.37 (14)H6A—C6—H6C109.5
F2—P1—F2ii179.78 (16)H6B—C6—H6C109.5
F2—P1—F390.06 (16)N2—C7—H7118.6
F2—P1—F3ii90.10 (16)C8—C7—H7118.6
F2ii—P1—F390.10 (16)C7—C8—H8119.6
F2ii—P1—F3ii90.06 (16)C9—C8—H8119.6
F3—P1—F3ii89.41 (16)C9—C10—H10119.6
Re1—N1—C1121.74 (18)C11—C10—H10119.6
Re1—N1—C5120.9 (2)N2—C11—H11118.7
C1—N1—C5117.3 (2)C10—C11—H11118.7
Re1—N2—C7121.15 (19)C9—C12—H12A109.5
Re1—N2—C11121.84 (18)C9—C12—H12B109.5
C7—N2—C11116.9 (2)C9—C12—H12C109.5
N1—C1—C2122.1 (2)H12A—C12—H12B109.5
C1—C2—C3120.8 (3)H12A—C12—H12C109.5
C2—C3—C4116.7 (2)H12B—C12—H12C109.5
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[ReO2(C6H7N)4]PF6
Mr735.68
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)10.4914 (4), 19.5359 (8), 14.0923 (5)
β (°) 109.5810 (11)
V3)2721.31 (18)
Z4
Radiation typeMo Kα
µ (mm1)4.60
Crystal size (mm)0.26 × 0.13 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.354, 0.576
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
12743, 3113, 2556
Rint0.021
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.044, 1.16
No. of reflections3113
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.39

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku/MSC, 2006), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), CrystalMaker (CrystalMaker, 2007).

Selected geometric parameters (Å, º) top
Re1—O11.7688 (19)Re1—N22.146 (2)
Re1—N12.147 (2)
O1—Re1—O1i180.00 (12)O1—Re1—N290.35 (8)
O1—Re1—N190.33 (9)N1—Re1—N290.20 (8)
Symmetry code: (i) x+3/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the Japan Society for Promotion of Science (JSPS).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBélanger, S. & Beauchamp, A. L. (1996). Inorg. Chem. 35, 7836–7844.  Google Scholar
First citationBrewer, J. C. & Gray, H. B. (1989). Inorg. Chem. 28, 3334–3336.  CrossRef CAS Web of Science Google Scholar
First citationCanlier, A., Kawasaki, T., Chowdhury, S. & Ikeda, Y. (2010). Inorg. Chim. Acta, 363, 1–7.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrystalMaker (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationDilworth, J. R. & Parrott, S. J. (1998). Chem. Soc. Rev. 27, 43–55.  CAS Google Scholar
First citationGancheff, J. S., Kremer, C., Ventura, O. N., Domínguez, S., Bazzicalupi, C., Bianchi, A., Suescun, L. & Mombrú, A. W. (2006). New J. Chem. 30, 1650–1654.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrey, J. K., Butler, I. S. & Reber, C. (2004). Can. J. Chem. 82, 1083–1091.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKochel, A. (2006). Acta Cryst. E62, m1740–m1742.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKremer, C., Kremer, E., Domínguez, S., Chinea, E., Mederos, A. & Castiñeiras, A. (1996). Polyhedron, 15, 4341–4347.  CSD CrossRef CAS Web of Science Google Scholar
First citationLuck, R. L. & O'Neill, R. S. (2001). Polyhedron, 20, 773–782.  Web of Science CSD CrossRef CAS Google Scholar
First citationMachura, B., Kruszynski, R., Penczek, R., Mroziński, J. & Kusz, J. (2008). Polyhedron, 27, 797–804.  Web of Science CSD CrossRef CAS Google Scholar
First citationPipes, D. W. & Meyer, T. J. (1985). J. Am. Chem. Soc. 107, 7201–7202.  CrossRef CAS Web of Science Google Scholar
First citationReddy, K. R., Domingos, Â., Paulo, A. & Santos, I. (1999). Inorg. Chem. 38, 4278–4282.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiczek, M., Krawczyk, M. S. & Lis, T. (2009). Acta Cryst. E65, m1057.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThorp, H. H., Houten, J. V. & Gray, H. B. (1989). Inorg. Chem. 28, 889–892.  CrossRef CAS Web of Science Google Scholar
First citationVolkert, W. A. & Hoffman, T. J. (1999). Chem. Rev. 99, 2269–2292.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 7| July 2010| Pages m857-m858
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds