organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Ethyl 4-hy­dr­oxy-6-(2-hy­dr­oxy­phen­yl)-2-oxo-4-(tri­fluoro­methyl)per­hydro­pyrimidine-5-carboxyl­ate

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: wchz3058@126.com

(Received 24 May 2010; accepted 4 June 2010; online 16 June 2010)

In the title compound, C14H15F3N2O5, prepared by reaction of 2-hy­droxy­benzaldehyde, ethyl 4,4,4-trifluoro-3-oxobutano­ate and urea, the tetra­pyrimidine ring adopts a half-chair conformation. The crystal structure is stabilized by five inter­molecular hydrogen bonds, three O—H⋯O and two N—H⋯O, giving cyclic dimers (through three hydrogen bonds) which are further extended into a two-dimensional network.

Related literature

For the bioactivity of dihydro­pyrimidines, see: Brier et al. (2004[Brier, S., Lemaire, D., DeBonis, S., Forest, E. & Kozielski, F. (2004). Biochemistry, 43, 13072-13082.]); Cochran et al. (2005[Cochran, J. C., Gatial, J. E., Kapoor, T. M. & Gilbert, S. P. (2005). J. Biol. Chem. 280, 12658-12667.]); Moran et al. (2007[Moran, M. M., Fanger, C., Chong, J. A., McNamara, C., Zhen, X. G. & Mandel-Brehm, J. (2007). WO Patent No. 2 007 073 505.]); Zorkun et al. (2006[Zorkun, I. S., Sarac, S., Celebi, S. & Erol, K. (2006). Bioorg. Med. Chem. 14, 8582-8589.]). For the bioactivity of organofluorine compounds, see: Hermann et al. (2003[Hermann, B., Erwin, H. & Hansjorg, K. (2003). US Patent No. 2 003 176 284.]); Ulrich (2004[Ulrich, H. (2004). US Patent No. 2 004 033 897.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15F3N2O5

  • Mr = 348.28

  • Monoclinic, P 21 /n

  • a = 12.0940 (15) Å

  • b = 8.665 (1) Å

  • c = 14.3110 (18) Å

  • β = 93.987 (6)°

  • V = 1496.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 113 K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.965, Tmax = 0.973

  • 15222 measured reflections

  • 3558 independent reflections

  • 2461 reflections with I > 2σ(I)'

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.075

  • S = 0.96

  • 3558 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H4⋯O1i 0.836 (14) 2.244 (14) 3.0760 (13) 174.1 (14)
N2—H5⋯O2ii 0.867 (14) 2.040 (15) 2.9064 (14) 177.4 (13)
O1—H1⋯O5i 0.858 (17) 2.588 (16) 3.0983 (13) 119.2 (13)
O1—H1⋯O3i 0.858 (17) 2.013 (17) 2.8232 (13) 157.1 (15)
O5—H6⋯O2iii 0.912 (16) 1.759 (17) 2.6685 (12) 175.8 (14)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+2; (iii) x, y+1, z.

Data collection: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Dihydropyrimidine (DHPM) derivatives can be used as potential calcium channel blockers (Zorkun et al., 2006), inhibitors of mitotic kinesin Eg5 for treating cancer (Cochran et al., 2005; Brier et al., 2004) and as TRPA1 modulators for treating pain (Moran et al., 2007). In addition, compounds that contain fluorine have special bioactivity, e.g. flumioxazin is a widely used herbicide (Hermann et al., 2003; Ulrich, 2004). This led us to focus our attention on the synthesis and bioactivity of these important fused perfluoroalkylated heterocyclic compounds. During the synthesis of DHPM derivatives, the title compound, an intermediate C14H15F3N2O5 (I) was isolated and the structure confirmed by X-ray diffraction, in order to elucidate the reaction mechanism.

In the structure of the title molecule, the dihydropyrimidine ring adopts a half-chair conformation. The crystal structure is stabilized by five intermolecular hydrogen bonds, three O—H···O and two N—H···O (Table 1), giving cyclic dimers which are further extended into a two-dimensional network (Fig. 2).

dimension?

Related literature top

For the bioactivity of dihydropyrimidines, see: Brier et al. (2004); Cochran et al. (2005); Moran et al. (2007); Zorkun et al. (2006). For the bioactivity of organofluorine compounds, see: Hermann et al. (2003); Ulrich (2004).

Experimental top

The title compound was synthesized refluxing for 3 h, a stirred solution of 2-hydroxybenzaldehyde (0.61 g, 5 mmol), ethyl 4,4,4-trifluoro-3-oxobutanoate (1.11 g, 6 mmol) and urea (0.45 g, 7.5 mmol) in 5 ml of ethanol, the reaction catalyzed by sulfamic acid (0.15 g). The solvent was evaporated in vacuo and the residue was washed with water. The title compound was recrystallized from 50% aqueous ethanol and single crystals of (I) were obtained by slow evaporation.

Refinement top

Hydrogen atoms involved in hydrogen-bonding inetractions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were placed in calculated positions, with C—H(aromatic) = 0.95 Å and C—H(aliphatic) = 0.98 or 0.99 Å, and treated as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed line.
rac-Ethyl 4-hydroxy-6-(2-hydroxyphenyl)-2-oxo-4-(trifluoromethyl)perhydropyrimidine- 5-carboxylate top
Crystal data top
C14H15F3N2O5F(000) = 720
Mr = 348.28Dx = 1.546 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 4600 reflections
a = 12.0940 (15) Åθ = 1.7–28.0°
b = 8.665 (1) ŵ = 0.14 mm1
c = 14.3110 (18) ÅT = 113 K
β = 93.987 (6)°Prism, colorless
V = 1496.1 (3) Å30.26 × 0.22 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn724 CCD
diffractometer
3558 independent reflections
Radiation source: rotating anode2461 reflections with I > 2σ(I)'
Multilayer monochromatorRint = 0.043
Detector resolution: 14.222 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω scansh = 1515
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
k = 1011
Tmin = 0.965, Tmax = 0.973l = 1815
15222 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0366P)2]
where P = (Fo2 + 2Fc2)/3
3558 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H15F3N2O5V = 1496.1 (3) Å3
Mr = 348.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.0940 (15) ŵ = 0.14 mm1
b = 8.665 (1) ÅT = 113 K
c = 14.3110 (18) Å0.26 × 0.22 × 0.20 mm
β = 93.987 (6)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
3558 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
2461 reflections with I > 2σ(I)'
Tmin = 0.965, Tmax = 0.973Rint = 0.043
15222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.29 e Å3
3558 reflectionsΔρmin = 0.17 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.63046 (7)0.13597 (8)0.56068 (5)0.0284 (2)
F20.70104 (6)0.07799 (8)0.61474 (5)0.02243 (19)
F30.52483 (6)0.04190 (9)0.61064 (5)0.0278 (2)
O10.73825 (7)0.17971 (10)0.73408 (6)0.0166 (2)
O20.57743 (7)0.12700 (9)0.92883 (6)0.0155 (2)
O30.61021 (7)0.46053 (9)0.68641 (6)0.0188 (2)
O40.44283 (7)0.37553 (9)0.63011 (6)0.0189 (2)
O50.57096 (8)0.57378 (10)0.88466 (7)0.0226 (2)
N10.62882 (9)0.02277 (12)0.79262 (7)0.0144 (2)
N20.52802 (9)0.11947 (11)0.89483 (8)0.0151 (2)
C10.63604 (10)0.10070 (14)0.72522 (9)0.0136 (3)
C20.54011 (10)0.21315 (13)0.73746 (8)0.0128 (3)
H20.46930.15720.72010.015*
C30.53875 (10)0.26147 (13)0.84121 (8)0.0139 (3)
H30.61030.31340.86140.017*
C40.57828 (10)0.01283 (14)0.87496 (9)0.0137 (3)
C50.62326 (10)0.02811 (14)0.62678 (9)0.0169 (3)
C60.53918 (10)0.36240 (14)0.68090 (8)0.0144 (3)
C70.41216 (11)0.52976 (14)0.59613 (10)0.0219 (3)
H7A0.47040.57230.55820.026*
H7B0.40240.60030.64940.026*
C80.30531 (11)0.51220 (17)0.53746 (10)0.0273 (3)
H8A0.31660.44330.48470.033*
H8B0.28060.61350.51370.033*
H8C0.24890.46830.57570.033*
C90.44302 (10)0.37055 (13)0.85540 (8)0.0145 (3)
C100.46361 (10)0.52609 (14)0.87614 (8)0.0157 (3)
C110.37451 (11)0.62576 (15)0.88661 (9)0.0203 (3)
H110.38820.73120.90140.024*
C120.26690 (11)0.57248 (15)0.87573 (9)0.0233 (3)
H120.20710.64120.88360.028*
C130.24560 (12)0.41890 (15)0.85339 (10)0.0248 (3)
H130.17150.38240.84520.030*
C140.33378 (11)0.31964 (15)0.84326 (9)0.0204 (3)
H140.31940.21460.82770.024*
H10.7889 (15)0.1108 (18)0.7422 (12)0.046 (5)*
H40.6684 (12)0.1011 (15)0.7884 (9)0.021 (4)*
H50.4973 (12)0.1248 (15)0.9477 (11)0.025 (4)*
H60.5734 (13)0.6771 (19)0.8967 (11)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0430 (5)0.0269 (4)0.0157 (4)0.0048 (4)0.0052 (4)0.0046 (3)
F20.0214 (4)0.0232 (4)0.0232 (4)0.0060 (3)0.0047 (3)0.0049 (3)
F30.0180 (4)0.0365 (5)0.0285 (5)0.0054 (4)0.0001 (3)0.0131 (4)
O10.0097 (4)0.0138 (5)0.0264 (5)0.0005 (4)0.0010 (4)0.0003 (4)
O20.0196 (5)0.0110 (4)0.0161 (5)0.0002 (4)0.0029 (4)0.0015 (4)
O30.0161 (5)0.0168 (5)0.0234 (5)0.0030 (4)0.0004 (4)0.0028 (4)
O40.0151 (5)0.0168 (5)0.0241 (5)0.0006 (4)0.0041 (4)0.0051 (4)
O50.0165 (5)0.0134 (5)0.0381 (6)0.0009 (4)0.0021 (4)0.0064 (4)
N10.0154 (5)0.0115 (5)0.0168 (6)0.0045 (4)0.0049 (4)0.0010 (4)
N20.0197 (6)0.0118 (5)0.0146 (6)0.0027 (4)0.0065 (4)0.0009 (4)
C10.0105 (6)0.0133 (6)0.0172 (7)0.0007 (5)0.0014 (5)0.0020 (5)
C20.0114 (6)0.0120 (6)0.0150 (7)0.0009 (5)0.0013 (5)0.0010 (5)
C30.0135 (6)0.0131 (6)0.0152 (7)0.0001 (5)0.0017 (5)0.0014 (5)
C40.0113 (6)0.0132 (6)0.0163 (7)0.0022 (5)0.0009 (5)0.0015 (5)
C50.0148 (6)0.0171 (6)0.0189 (7)0.0016 (5)0.0027 (5)0.0010 (5)
C60.0128 (6)0.0166 (7)0.0138 (7)0.0021 (5)0.0020 (5)0.0009 (5)
C70.0209 (7)0.0161 (7)0.0282 (8)0.0041 (5)0.0009 (6)0.0072 (6)
C80.0217 (7)0.0306 (8)0.0291 (8)0.0048 (6)0.0013 (6)0.0094 (6)
C90.0148 (6)0.0139 (6)0.0153 (7)0.0023 (5)0.0036 (5)0.0024 (5)
C100.0149 (6)0.0150 (6)0.0172 (7)0.0009 (5)0.0015 (5)0.0004 (5)
C110.0209 (7)0.0143 (7)0.0257 (8)0.0033 (5)0.0018 (6)0.0028 (6)
C120.0178 (7)0.0223 (7)0.0302 (8)0.0081 (6)0.0045 (6)0.0003 (6)
C130.0150 (7)0.0246 (7)0.0353 (8)0.0003 (6)0.0049 (6)0.0016 (6)
C140.0183 (7)0.0147 (7)0.0289 (8)0.0005 (5)0.0059 (6)0.0017 (6)
Geometric parameters (Å, º) top
F1—C51.3370 (14)C2—C31.5438 (17)
F2—C51.3350 (14)C2—H21.0000
F3—C51.3418 (14)C3—C91.5191 (16)
O1—C11.4110 (14)C3—H31.0000
O1—H10.858 (17)C7—C81.4990 (19)
O2—C41.2547 (14)C7—H7A0.9900
O3—C61.2073 (14)C7—H7B0.9900
O4—C61.3347 (15)C8—H8A0.9800
O4—C71.4611 (14)C8—H8B0.9800
O5—C101.3599 (15)C8—H8C0.9800
O5—H60.912 (16)C9—C141.3922 (17)
N1—C41.3674 (15)C9—C101.3986 (17)
N1—C11.4472 (16)C10—C111.3971 (17)
N1—H40.836 (14)C11—C121.3795 (18)
N2—C41.3373 (16)C11—H110.9500
N2—C31.4606 (15)C12—C131.3886 (19)
N2—H50.867 (14)C12—H120.9500
C1—C21.5344 (16)C13—C141.3856 (18)
C1—C51.5407 (18)C13—H130.9500
C2—C61.5254 (16)C14—H140.9500
C1—O1—H1106.7 (11)F3—C5—C1111.93 (10)
C6—O4—C7116.81 (10)O3—C6—O4124.46 (11)
C10—O5—H6109.5 (10)O3—C6—C2125.69 (12)
C4—N1—C1125.39 (10)O4—C6—C2109.59 (10)
C4—N1—H4113.9 (9)O4—C7—C8106.41 (10)
C1—N1—H4119.4 (9)O4—C7—H7A110.4
C4—N2—C3123.51 (10)C8—C7—H7A110.4
C4—N2—H5117.4 (9)O4—C7—H7B110.4
C3—N2—H5118.2 (9)C8—C7—H7B110.4
O1—C1—N1113.07 (10)H7A—C7—H7B108.6
O1—C1—C2110.26 (10)C7—C8—H8A109.5
N1—C1—C2108.19 (9)C7—C8—H8B109.5
O1—C1—C5108.17 (9)H8A—C8—H8B109.5
N1—C1—C5107.50 (10)C7—C8—H8C109.5
C2—C1—C5109.58 (10)H8A—C8—H8C109.5
C6—C2—C1117.10 (9)H8B—C8—H8C109.5
C6—C2—C3106.28 (10)C14—C9—C10119.03 (11)
C1—C2—C3109.92 (10)C14—C9—C3120.77 (11)
C6—C2—H2107.7C10—C9—C3120.12 (11)
C1—C2—H2107.7O5—C10—C11122.76 (11)
C3—C2—H2107.7O5—C10—C9117.82 (10)
N2—C3—C9110.95 (9)C11—C10—C9119.42 (11)
N2—C3—C2106.50 (10)C12—C11—C10120.64 (12)
C9—C3—C2110.89 (10)C12—C11—H11119.7
N2—C3—H3109.5C10—C11—H11119.7
C9—C3—H3109.5C11—C12—C13120.35 (12)
C2—C3—H3109.5C11—C12—H12119.8
O2—C4—N2121.47 (11)C13—C12—H12119.8
O2—C4—N1120.20 (11)C14—C13—C12119.15 (13)
N2—C4—N1118.31 (11)C14—C13—H13120.4
F2—C5—F1107.99 (10)C12—C13—H13120.4
F2—C5—F3106.92 (10)C13—C14—C9121.39 (12)
F1—C5—F3107.15 (10)C13—C14—H14119.3
F2—C5—C1111.86 (10)C9—C14—H14119.3
F1—C5—C1110.74 (10)
C4—N1—C1—O198.15 (14)O1—C1—C5—F3176.35 (10)
C4—N1—C1—C224.26 (16)N1—C1—C5—F361.24 (13)
C4—N1—C1—C5142.52 (11)C2—C1—C5—F356.12 (13)
O1—C1—C2—C649.05 (14)C7—O4—C6—O313.82 (17)
N1—C1—C2—C6173.17 (10)C7—O4—C6—C2160.62 (10)
C5—C1—C2—C669.90 (13)C1—C2—C6—O360.93 (16)
O1—C1—C2—C372.30 (12)C3—C2—C6—O362.31 (15)
N1—C1—C2—C351.82 (13)C1—C2—C6—O4124.72 (11)
C5—C1—C2—C3168.75 (9)C3—C2—C6—O4112.04 (11)
C4—N2—C3—C9158.86 (11)C6—O4—C7—C8176.95 (10)
C4—N2—C3—C238.09 (16)N2—C3—C9—C1451.23 (16)
C6—C2—C3—N2174.26 (10)C2—C3—C9—C1466.90 (14)
C1—C2—C3—N258.11 (12)N2—C3—C9—C10132.13 (12)
C6—C2—C3—C953.45 (12)C2—C3—C9—C10109.73 (13)
C1—C2—C3—C9178.92 (9)C14—C9—C10—O5177.92 (11)
C3—N2—C4—O2171.65 (11)C3—C9—C10—O51.22 (17)
C3—N2—C4—N110.02 (18)C14—C9—C10—C111.67 (18)
C1—N1—C4—O2179.52 (11)C3—C9—C10—C11178.36 (11)
C1—N1—C4—N22.12 (18)O5—C10—C11—C12178.89 (12)
O1—C1—C5—F263.67 (12)C9—C10—C11—C120.68 (19)
N1—C1—C5—F258.74 (13)C10—C11—C12—C130.5 (2)
C2—C1—C5—F2176.10 (9)C11—C12—C13—C140.7 (2)
O1—C1—C5—F156.85 (13)C12—C13—C14—C90.3 (2)
N1—C1—C5—F1179.26 (10)C10—C9—C14—C131.49 (19)
C2—C1—C5—F163.38 (12)C3—C9—C14—C13178.16 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O1i0.836 (14)2.244 (14)3.0760 (13)174.1 (14)
N2—H5···O2ii0.867 (14)2.040 (15)2.9064 (14)177.4 (13)
O1—H1···O5i0.858 (17)2.588 (16)3.0983 (13)119.2 (13)
O1—H1···O3i0.858 (17)2.013 (17)2.8232 (13)157.1 (15)
O5—H6···O2iii0.912 (16)1.759 (17)2.6685 (12)175.8 (14)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y, z+2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H15F3N2O5
Mr348.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)12.0940 (15), 8.665 (1), 14.3110 (18)
β (°) 93.987 (6)
V3)1496.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2009)
Tmin, Tmax0.965, 0.973
No. of measured, independent and
observed [I > 2σ(I)'] reflections
15222, 3558, 2461
Rint0.043
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.075, 0.96
No. of reflections3558
No. of parameters234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.17

Computer programs: CrystalClear-SM Expert (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O1i0.836 (14)2.244 (14)3.0760 (13)174.1 (14)
N2—H5···O2ii0.867 (14)2.040 (15)2.9064 (14)177.4 (13)
O1—H1···O5i0.858 (17)2.588 (16)3.0983 (13)119.2 (13)
O1—H1···O3i0.858 (17)2.013 (17)2.8232 (13)157.1 (15)
O5—H6···O2iii0.912 (16)1.759 (17)2.6685 (12)175.8 (14)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y, z+2; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Education Department, China (grant No. 2007150036).

References

First citationBrier, S., Lemaire, D., DeBonis, S., Forest, E. & Kozielski, F. (2004). Biochemistry, 43, 13072–13082.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCochran, J. C., Gatial, J. E., Kapoor, T. M. & Gilbert, S. P. (2005). J. Biol. Chem. 280, 12658–12667.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHermann, B., Erwin, H. & Hansjorg, K. (2003). US Patent No. 2 003 176 284.  Google Scholar
First citationMoran, M. M., Fanger, C., Chong, J. A., McNamara, C., Zhen, X. G. & Mandel-Brehm, J. (2007). WO Patent No. 2 007 073 505.  Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUlrich, H. (2004). US Patent No. 2 004 033 897.  Google Scholar
First citationZorkun, I. S., Sarac, S., Celebi, S. & Erol, K. (2006). Bioorg. Med. Chem. 14, 8582–8589.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds