organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hy­dr­oxy-8-oxo-3-nor-methyl­chamigrane-2,7-peroxide

aSouth China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
*Correspondence e-mail: dongzeliu@scsio.ac.cn

(Received 1 June 2010; accepted 23 June 2010; online 30 June 2010)

In the title compound, C14H22O4 (systematic name: 9-hy­droxy-1,5,5-trimethyl-1,8-epidi­oxy­spiro­[5.5]decan-2-one), which was isolated from the fermentation broth of Steccherinum ochraceum, the two six-membered rings adopt chair conformations and are bridged by a peroxide group. The hy­droxy H atom forms a three-centre cyclic inter­molecular O—H⋯(O,O′) hydrogen-bonding inter­action with a peroxide and a carbonyl O-atom acceptor, forming [100] chains.

Related literature

For similar structures, see Miyashita et al. (1998[Miyashita, K. Tanaka, A. Shintaku, H. & Iwata, C. (1998). Tetrahedron, 8, 1395-1406.]).

[Scheme 1]

Experimental

Crystal data
  • C14H22O4

  • Mr = 254.32

  • Orthorhombic, P 21 21 21

  • a = 7.3138 (4) Å

  • b = 12.4206 (7) Å

  • c = 13.9408 (8) Å

  • V = 1266.41 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.42 × 0.38 × 0.35 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.967

  • 6456 measured reflections

  • 1602 independent reflections

  • 1471 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.08

  • 1602 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.84 2.51 3.112 (2) 130
O2—H2A⋯O4i 0.84 2.17 2.943 (2) 154
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Mushrooms have proved to be a rich source of secondary metabolites with unusual structures as well as interesting biological activities. As a continuation of our study characterizing bioactive metabolites from higher fungi in China, a new norsesquiterpene peroxide, 3-hydroxy-8-oxo-3-nor-methylchamigrane-2,7-peroxide, C14H22O4 (I) was isolated from the fermentation broth of Steccherinum ochraceum. The six-membered C1–C2–C3–C4–C5–C6 and C1–C2–O(1)–O(2)–C7–C6 rings both adopt chair conformations and are bridged by the peroxide group (Fig. 1). The absolute configuration was not determined for the four chiral centres in this compound and the structures of no other compounds with a similar peroxide-bridged cage system are present in the CSD. The hydroxyl H in (I) gives a three-centre cyclic intermolecular O–H···O,O' hydrogen-bonding interaction with both a peroxide and a carbonyl O acceptor, (Table 1) giving one-dimensional chains which extend down the a direction of the unit cell.

Related literature top

For similar structures, see Miyashita et al. (1998).

Experimental top

S. ochraceum was collected from the Ailao Mountain of Yunnan Province, China. The strain was cultured in a liquid medium composed of potato (200 g), glucose (20 g), KH2PO4 (3 g), MgSO4 (1.5 g), citric acid (0.1 g), and thiamin hydrochloride (10 mg) in 1 L of deionized water. The fungus was grown in reagent bottles (500 mL; media of 300 mL). The pH was adjusted to 6.5 before autoclaving. Fermentation was carried out on a shaker at 22° C and 150 RPM for 25 days. The culture broth (20 L) was filtered to remove the mycelium. The filtrate was then successively extracted twice with ethyl acetate, and the crude extract (3.5 g) was chromatographed on a silica gel column using a CHCl3/MeOH gradient. Several fractions of increasing polarity were collected. Fraction II (850 mg) eluted with CHCl3/MeOH (100:1, v/v) was subjected to column chromatography over silica gel and Sephadex LH-20, using a petroleum ether/ethyl acetate (8:1, v/v) and CHCl3/MeOH (1:1, v/v) eluents respectively, and further purified by repeated recrystallization from MeOH to yield (I) (150 mg). Single crystals were obtained by slow evaporation of a MeOH solution.

Refinement top

All H atoms were placed in calculated sites and allowed to ride with C–H = 0.98–1.00 Å and O–H = 0.84 Å and Uiso = 1.2UeqC(methylene) and O(hydroxyl) or 1.5UeqC(methyl). The absolute configuration could not be determined for this light atom compound and Friedel pairs were averaged in the final refinement with the configuration for the four chiral centres as 2S,3R,6S,7S.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for (I), with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
9-hydroxy-1,5,5-trimethyl-1,8-epidioxyspiro[5.5]decan-2-one top
Crystal data top
C14H22O4F(000) = 552
Mr = 254.32Dx = 1.334 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4034 reflections
a = 7.3138 (4) Åθ = 2.8–27.0°
b = 12.4206 (7) ŵ = 0.10 mm1
c = 13.9408 (8) ÅT = 173 K
V = 1266.41 (12) Å3Block, colorless
Z = 40.42 × 0.38 × 0.35 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1602 independent reflections
Radiation source: fine-focus sealed tube1471 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 59
Tmin = 0.961, Tmax = 0.967k = 1515
6456 measured reflectionsl = 1713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.2837P]
where P = (Fo2 + 2Fc2)/3
1602 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H22O4V = 1266.41 (12) Å3
Mr = 254.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3138 (4) ŵ = 0.10 mm1
b = 12.4206 (7) ÅT = 173 K
c = 13.9408 (8) Å0.42 × 0.38 × 0.35 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1602 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1471 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.967Rint = 0.021
6456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.08Δρmax = 0.30 e Å3
1602 reflectionsΔρmin = 0.17 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4858 (3)0.29411 (15)0.68490 (13)0.0218 (4)
H1A0.54960.23090.71240.026*
H1B0.35320.28570.69710.026*
C20.5204 (3)0.29930 (15)0.57779 (13)0.0225 (4)
H20.47470.23040.54950.027*
C30.4112 (3)0.39043 (16)0.53239 (13)0.0247 (4)
H30.27860.37190.53800.030*
C40.4405 (3)0.49914 (16)0.58127 (15)0.0296 (5)
H4A0.34290.54940.56080.036*
H4B0.55910.52950.56020.036*
C50.4393 (3)0.49050 (15)0.69173 (14)0.0259 (4)
H5A0.31140.48120.71340.031*
H5B0.48460.55930.71870.031*
C60.5554 (2)0.39771 (14)0.73338 (13)0.0183 (4)
C70.7632 (3)0.40990 (16)0.70409 (13)0.0229 (4)
C80.8819 (3)0.32554 (18)0.75389 (15)0.0280 (4)
C90.8623 (3)0.3215 (2)0.86128 (15)0.0334 (5)
H9A0.90720.38960.88970.040*
H9B0.93670.26170.88730.040*
C100.6617 (3)0.30478 (17)0.88798 (14)0.0285 (4)
H10A0.65070.30540.95880.034*
H10B0.62290.23280.86530.034*
C110.5305 (3)0.38957 (16)0.84637 (14)0.0221 (4)
C120.3354 (3)0.3526 (2)0.87222 (16)0.0331 (5)
H12A0.32330.34800.94210.050*
H12B0.31220.28170.84380.050*
H12C0.24670.40460.84720.050*
C130.5579 (3)0.49723 (17)0.89893 (14)0.0312 (5)
H13A0.68210.52380.88710.047*
H13B0.54010.48660.96790.047*
H13C0.46910.54990.87520.047*
C140.8524 (3)0.52104 (18)0.72087 (16)0.0341 (5)
H14A0.77300.57750.69490.051*
H14B0.97130.52350.68850.051*
H14C0.86950.53260.78980.051*
O10.7133 (2)0.30323 (12)0.56148 (10)0.0295 (4)
O20.4515 (2)0.40426 (12)0.43304 (10)0.0333 (4)
H2A0.43530.34570.40410.050*
O30.7841 (2)0.40379 (13)0.60137 (10)0.0298 (3)
O40.9872 (2)0.26855 (15)0.71020 (12)0.0423 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0262 (9)0.0173 (8)0.0219 (9)0.0021 (8)0.0017 (7)0.0004 (7)
C20.0273 (9)0.0180 (8)0.0222 (9)0.0018 (8)0.0007 (8)0.0047 (7)
C30.0310 (10)0.0245 (9)0.0187 (8)0.0002 (8)0.0046 (8)0.0016 (7)
C40.0439 (12)0.0208 (9)0.0242 (9)0.0050 (9)0.0104 (9)0.0004 (8)
C50.0338 (10)0.0211 (9)0.0229 (9)0.0069 (9)0.0053 (8)0.0041 (8)
C60.0198 (8)0.0179 (8)0.0174 (8)0.0001 (7)0.0005 (7)0.0018 (7)
C70.0234 (9)0.0278 (9)0.0174 (8)0.0029 (8)0.0002 (7)0.0005 (8)
C80.0204 (9)0.0350 (10)0.0284 (10)0.0006 (9)0.0018 (8)0.0055 (9)
C90.0306 (11)0.0433 (12)0.0264 (10)0.0114 (10)0.0051 (9)0.0013 (10)
C100.0342 (11)0.0295 (10)0.0217 (9)0.0024 (9)0.0005 (8)0.0035 (8)
C110.0228 (9)0.0254 (9)0.0182 (8)0.0007 (8)0.0011 (7)0.0024 (8)
C120.0274 (10)0.0467 (13)0.0251 (10)0.0053 (10)0.0068 (8)0.0040 (9)
C130.0389 (12)0.0318 (10)0.0228 (9)0.0023 (10)0.0015 (9)0.0080 (8)
C140.0363 (11)0.0364 (11)0.0297 (10)0.0155 (10)0.0007 (9)0.0004 (9)
O10.0286 (7)0.0345 (8)0.0253 (7)0.0029 (6)0.0013 (6)0.0095 (6)
O20.0511 (10)0.0305 (7)0.0184 (6)0.0015 (8)0.0050 (7)0.0015 (6)
O30.0307 (7)0.0378 (8)0.0208 (7)0.0093 (7)0.0037 (6)0.0027 (6)
O40.0329 (8)0.0555 (10)0.0386 (9)0.0160 (8)0.0052 (7)0.0158 (8)
Geometric parameters (Å, º) top
C1—C21.516 (3)C8—O41.211 (3)
C1—C61.540 (2)C8—C91.505 (3)
C1—H1A0.9900C9—C101.528 (3)
C1—H1B0.9900C9—H9A0.9900
C2—O11.430 (2)C9—H9B0.9900
C2—C31.523 (3)C10—C111.538 (3)
C2—H21.0000C10—H10A0.9900
C3—O21.426 (2)C10—H10B0.9900
C3—C41.528 (3)C11—C131.538 (3)
C3—H31.0000C11—C121.542 (3)
C4—C51.544 (3)C12—H12A0.9800
C4—H4A0.9900C12—H12B0.9800
C4—H4B0.9900C12—H12C0.9800
C5—C61.545 (3)C13—H13A0.9800
C5—H5A0.9900C13—H13B0.9800
C5—H5B0.9900C13—H13C0.9800
C6—C71.581 (3)C14—H14A0.9800
C6—C111.589 (2)C14—H14B0.9800
C7—O31.442 (2)C14—H14C0.9800
C7—C81.527 (3)O1—O31.462 (2)
C7—C141.545 (3)O2—H2A0.8400
C2—C1—C6109.98 (15)O4—C8—C9122.8 (2)
C2—C1—H1A109.7O4—C8—C7122.27 (19)
C6—C1—H1A109.7C9—C8—C7114.91 (18)
C2—C1—H1B109.7C8—C9—C10109.78 (18)
C6—C1—H1B109.7C8—C9—H9A109.7
H1A—C1—H1B108.2C10—C9—H9A109.7
O1—C2—C1108.82 (16)C8—C9—H9B109.7
O1—C2—C3115.22 (17)C10—C9—H9B109.7
C1—C2—C3110.70 (16)H9A—C9—H9B108.2
O1—C2—H2107.3C9—C10—C11114.46 (17)
C1—C2—H2107.3C9—C10—H10A108.6
C3—C2—H2107.3C11—C10—H10A108.6
O2—C3—C2112.61 (17)C9—C10—H10B108.6
O2—C3—C4107.32 (16)C11—C10—H10B108.6
C2—C3—C4113.44 (16)H10A—C10—H10B107.6
O2—C3—H3107.7C13—C11—C10109.54 (16)
C2—C3—H3107.7C13—C11—C12105.55 (17)
C4—C3—H3107.7C10—C11—C12106.57 (17)
C3—C4—C5112.51 (16)C13—C11—C6113.71 (16)
C3—C4—H4A109.1C10—C11—C6110.25 (15)
C5—C4—H4A109.1C12—C11—C6110.88 (16)
C3—C4—H4B109.1C11—C12—H12A109.5
C5—C4—H4B109.1C11—C12—H12B109.5
H4A—C4—H4B107.8H12A—C12—H12B109.5
C4—C5—C6115.08 (16)C11—C12—H12C109.5
C4—C5—H5A108.5H12A—C12—H12C109.5
C6—C5—H5A108.5H12B—C12—H12C109.5
C4—C5—H5B108.5C11—C13—H13A109.5
C6—C5—H5B108.5C11—C13—H13B109.5
H5A—C5—H5B107.5H13A—C13—H13B109.5
C1—C6—C5106.09 (15)C11—C13—H13C109.5
C1—C6—C7106.51 (15)H13A—C13—H13C109.5
C5—C6—C7111.08 (16)H13B—C13—H13C109.5
C1—C6—C11110.13 (15)C7—C14—H14A109.5
C5—C6—C11110.94 (15)C7—C14—H14B109.5
C7—C6—C11111.84 (15)H14A—C14—H14B109.5
O3—C7—C8110.81 (16)C7—C14—H14C109.5
O3—C7—C1498.79 (15)H14A—C14—H14C109.5
C8—C7—C14107.71 (16)H14B—C14—H14C109.5
O3—C7—C6110.67 (15)C2—O1—O3108.54 (14)
C8—C7—C6111.29 (16)C3—O2—H2A109.5
C14—C7—C6116.91 (17)C7—O3—O1112.66 (14)
C6—C1—C2—O163.6 (2)C6—C7—C8—O4128.6 (2)
C6—C1—C2—C363.9 (2)O3—C7—C8—C9176.93 (18)
O1—C2—C3—O250.9 (2)C14—C7—C8—C976.0 (2)
C1—C2—C3—O2174.94 (16)C6—C7—C8—C953.3 (2)
O1—C2—C3—C471.2 (2)O4—C8—C9—C10126.6 (2)
C1—C2—C3—C452.8 (2)C7—C8—C9—C1055.4 (3)
O2—C3—C4—C5168.47 (18)C8—C9—C10—C1156.0 (3)
C2—C3—C4—C543.4 (3)C9—C10—C11—C1372.0 (2)
C3—C4—C5—C646.4 (3)C9—C10—C11—C12174.30 (18)
C2—C1—C6—C563.35 (19)C9—C10—C11—C653.9 (2)
C2—C1—C6—C755.08 (19)C1—C6—C11—C13167.83 (16)
C2—C1—C6—C11176.53 (15)C5—C6—C11—C1350.7 (2)
C4—C5—C6—C155.3 (2)C7—C6—C11—C1373.9 (2)
C4—C5—C6—C760.0 (2)C1—C6—C11—C1068.7 (2)
C4—C5—C6—C11174.90 (17)C5—C6—C11—C10174.15 (16)
C1—C6—C7—O352.6 (2)C7—C6—C11—C1049.5 (2)
C5—C6—C7—O362.5 (2)C1—C6—C11—C1249.1 (2)
C11—C6—C7—O3172.94 (15)C5—C6—C11—C1268.1 (2)
C1—C6—C7—C871.10 (18)C7—C6—C11—C12167.31 (16)
C5—C6—C7—C8173.81 (15)C1—C2—O1—O364.81 (18)
C11—C6—C7—C849.3 (2)C3—C2—O1—O360.17 (19)
C1—C6—C7—C14164.57 (16)C8—C7—O3—O166.13 (19)
C5—C6—C7—C1449.5 (2)C14—C7—O3—O1178.97 (15)
C11—C6—C7—C1475.1 (2)C6—C7—O3—O157.8 (2)
O3—C7—C8—O45.0 (3)C2—O1—O3—C764.05 (18)
C14—C7—C8—O4102.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.842.513.112 (2)130
O2—H2A···O4i0.842.172.943 (2)154
C2—H2···O1i1.002.493.231 (2)130
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H22O4
Mr254.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)7.3138 (4), 12.4206 (7), 13.9408 (8)
V3)1266.41 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.38 × 0.35
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
6456, 1602, 1471
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.08
No. of reflections1602
No. of parameters167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.17

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.842.513.112 (2)130
O2—H2A···O4i0.842.172.943 (2)154
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

This Project was supported by China Postdoctoral Science Foundation (5350209-7-1).

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMiyashita, K. Tanaka, A. Shintaku, H. & Iwata, C. (1998). Tetrahedron, 8, 1395–1406.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds