metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)copper(II) bis­­(2,3,4,5,6-penta­fluoro­benzoate) dihydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 30 June 2010; accepted 30 June 2010; online 7 July 2010)

The CuII atom in the title salt, [Cu(C10H24N4)(H2O)2](C6F5CO2)2·2H2O, is chelated by the four N atoms of the 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam) ligand and is coordinated by two water mol­ecules in a Jahn–Teller-type tetra­gonally distorted octa­hedral geometry. The CuII atom lies on a center of inversion. The cations, anions and uncoordinated water mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming a layer structure parallel to (001).

Related literature

For related (1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)copper carb­oxyl­ates, see: Lindoy et al. (2003[Lindoy, L. F., Mahinay, M. S., Skelton, B. W. & White, A. H. (2003). J. Coord. Chem. 56, 1203-1213.]); Hunter et al. (2005[Hunter, T. M., McNae, I. W., Liang, X., Bella, J., Parsons, S., Walkinshaw, M. D. & Sadler, P. J. (2005). Proc. Natl Acad. Sci. USA, 102, 2288-2292.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H24N4)(H2O)2](C7F5O2)2·2H2O

  • Mr = 758.08

  • Triclinic, [P \overline 1]

  • a = 7.1976 (6) Å

  • b = 8.7632 (7) Å

  • c = 12.1574 (10) Å

  • α = 79.378 (1)°

  • β = 75.408 (1)°

  • γ = 80.606 (1)°

  • V = 723.85 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.750, Tmax = 0.958

  • 6996 measured reflections

  • 3306 independent reflections

  • 3028 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.111

  • S = 1.06

  • 3306 reflections

  • 238 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2wi 0.86 (1) 2.17 (2) 2.997 (2) 157 (3)
N2—H2⋯O1w 0.86 (1) 2.70 (3) 3.123 (2) 112 (2)
O1w—H11⋯O2i 0.83 (1) 1.98 (1) 2.785 (2) 162 (3)
O1w—H12⋯O2w 0.83 (1) 2.10 (2) 2.898 (2) 160 (3)
O2w—H21⋯O1 0.83 (1) 1.90 (1) 2.723 (2) 169 (3)
O2w—H22⋯O1ii 0.83 (1) 2.08 (2) 2.842 (2) 152 (4)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The copper(II) ion forms a number of complexes with 1,4,8,11-tetraazacyclotetradecane in which the metal atom is coordinated by the four amino donor-atoms of the cyclic ligand. Among the carboxylate derivatives, neither the acetate nor the benzoate ions bind directly with the copper atom. The copper atom is coordinated instead by water molecules so that the carboxylate group interacts indirectly with the metal atom through the coordinated water molecules (Hunter et al., 2005; Lindoy et al., 2003). The copper(II) atom in the salt, [Cu(H2O)2(C10H24N4)]2+ 2(C6F5CO2)-.2H2O (Scheme I), is chelated by the four nitrogen atoms of the cyclam ligand and is coordinated by two water molecules in a Jahn-Teller type of tetragonally distorted octahedral geometry. The copper atom lies on a center of inversion (Fig. 1). The cations, anions and lattice water molecules are linked by N–H···O and O–H···O hydrogen bonds to form a layer structure.

Related literature top

For related (1,4,8,11-tetraazacyclotetradecane)copper carboxylates, see: Lindoy et al. (2003); Hunter et al. (2005).

Experimental top

1,4,8,11-Tetraazacyclotetradecane (0.50 g, 2.50 mmol) dissolved in ethanol (25 ml) was mixed with a suspension of copper pentafluorobenzoate (1.22 g, 2.5 mmol) in ethanol (50 ml) to give a purple solution. The solution was heated for an hour and then filtered. Prismatic crystals separated from the solution when it was left to cool slowly.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å; their displacement parameters were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of [Cu(H2O)2(C10H24N4)]2+ 2(C6F5CO2)-.2H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Diaqua(1,4,8,11-tetraazacyclotetradecane- κ4N1,N4,N8,N11)copper(II) bis(2,3,4,5,6-pentafluorobenzoate) dihydrate top
Crystal data top
[Cu(C10H24N4)(H2O)2](C7F5O2)2·2H2OZ = 1
Mr = 758.08F(000) = 387
Triclinic, P1Dx = 1.739 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1976 (6) ÅCell parameters from 3327 reflections
b = 8.7632 (7) Åθ = 2.4–28.3°
c = 12.1574 (10) ŵ = 0.87 mm1
α = 79.378 (1)°T = 100 K
β = 75.408 (1)°Plate, purple
γ = 80.606 (1)°0.35 × 0.15 × 0.05 mm
V = 723.85 (10) Å3
Data collection top
Bruker SMART APEX
diffractometer
3306 independent reflections
Radiation source: fine-focus sealed tube3028 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.750, Tmax = 0.958k = 1111
6996 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.8764P]
where P = (Fo2 + 2Fc2)/3
3306 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.49 e Å3
6 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Cu(C10H24N4)(H2O)2](C7F5O2)2·2H2Oγ = 80.606 (1)°
Mr = 758.08V = 723.85 (10) Å3
Triclinic, P1Z = 1
a = 7.1976 (6) ÅMo Kα radiation
b = 8.7632 (7) ŵ = 0.87 mm1
c = 12.1574 (10) ÅT = 100 K
α = 79.378 (1)°0.35 × 0.15 × 0.05 mm
β = 75.408 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3306 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3028 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.958Rint = 0.026
6996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0376 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.49 e Å3
3306 reflectionsΔρmin = 0.75 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.01239 (13)
F10.30292 (19)1.10724 (17)0.18468 (12)0.0207 (3)
F20.2995 (2)1.34413 (17)0.01066 (13)0.0238 (3)
F30.0014 (2)1.41338 (16)0.09309 (12)0.0232 (3)
F40.3014 (2)1.23540 (18)0.02310 (13)0.0257 (3)
F50.29974 (19)0.99746 (17)0.14925 (13)0.0201 (3)
O10.0371 (2)0.94440 (19)0.36194 (14)0.0171 (3)
O20.0383 (3)0.78296 (19)0.26114 (14)0.0185 (4)
O1W0.1535 (2)0.4892 (2)0.59710 (15)0.0184 (4)
H110.095 (4)0.418 (3)0.641 (2)0.027 (8)*
H120.059 (3)0.558 (3)0.598 (3)0.030 (9)*
O2W0.1025 (2)0.77849 (19)0.57103 (14)0.0149 (3)
H210.057 (4)0.818 (4)0.5037 (13)0.025 (8)*
H220.101 (5)0.843 (3)0.613 (3)0.038 (10)*
N10.4818 (3)0.3368 (2)0.40734 (15)0.0101 (3)
H10.3625 (19)0.321 (3)0.428 (2)0.018 (7)*
N20.4084 (3)0.6798 (2)0.38696 (16)0.0112 (4)
H20.2840 (15)0.687 (3)0.404 (2)0.015 (7)*
C10.4771 (3)0.6699 (3)0.26255 (19)0.0136 (4)
H1A0.61920.67020.23990.016*
H1B0.41760.76270.21790.016*
C20.4258 (3)0.5219 (3)0.23401 (19)0.0142 (4)
H2A0.28610.51550.26600.017*
H2B0.44990.52950.14940.017*
C30.5400 (3)0.3721 (3)0.28057 (18)0.0133 (4)
H3A0.51880.28370.24670.016*
H3B0.67980.38320.25720.016*
C40.5931 (3)0.1921 (2)0.45282 (19)0.0129 (4)
H4A0.73350.19720.42250.016*
H4B0.55910.10020.42890.016*
C50.5434 (3)0.1775 (3)0.58302 (19)0.0139 (4)
H5A0.40410.16790.61370.017*
H5B0.61900.08350.61630.017*
C60.0001 (3)0.9099 (3)0.27439 (18)0.0120 (4)
C70.0021 (3)1.0433 (2)0.17373 (18)0.0109 (4)
C80.1511 (3)1.1355 (3)0.13503 (19)0.0134 (4)
C90.1521 (3)1.2583 (3)0.04536 (19)0.0155 (4)
C100.0004 (4)1.2919 (3)0.00841 (19)0.0160 (5)
C110.1512 (3)1.2027 (3)0.0274 (2)0.0160 (4)
C120.1483 (3)1.0797 (3)0.11656 (19)0.0133 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0154 (2)0.0093 (2)0.0126 (2)0.00158 (14)0.00413 (14)0.00071 (14)
F10.0142 (6)0.0252 (8)0.0237 (7)0.0079 (6)0.0080 (6)0.0036 (6)
F20.0242 (7)0.0200 (7)0.0245 (8)0.0133 (6)0.0020 (6)0.0023 (6)
F30.0431 (9)0.0114 (7)0.0126 (7)0.0011 (6)0.0065 (6)0.0031 (5)
F40.0268 (8)0.0269 (8)0.0255 (8)0.0027 (6)0.0174 (6)0.0015 (6)
F50.0137 (6)0.0226 (7)0.0254 (7)0.0070 (5)0.0070 (5)0.0008 (6)
O10.0234 (8)0.0172 (8)0.0119 (7)0.0064 (7)0.0057 (6)0.0003 (6)
O20.0269 (9)0.0103 (8)0.0185 (8)0.0056 (6)0.0049 (7)0.0001 (6)
O1W0.0117 (8)0.0138 (8)0.0253 (9)0.0024 (6)0.0008 (7)0.0039 (7)
O2W0.0165 (8)0.0135 (8)0.0143 (8)0.0046 (6)0.0025 (6)0.0002 (6)
N10.0088 (8)0.0090 (8)0.0124 (9)0.0023 (7)0.0021 (7)0.0011 (7)
N20.0096 (8)0.0100 (8)0.0136 (9)0.0022 (7)0.0027 (7)0.0001 (7)
C10.0153 (10)0.0117 (10)0.0132 (10)0.0033 (8)0.0043 (8)0.0024 (8)
C20.0164 (10)0.0154 (11)0.0112 (10)0.0042 (8)0.0042 (8)0.0000 (8)
C30.0134 (10)0.0147 (10)0.0113 (10)0.0029 (8)0.0005 (8)0.0032 (8)
C40.0139 (10)0.0074 (9)0.0172 (11)0.0000 (8)0.0041 (8)0.0014 (8)
C50.0161 (10)0.0089 (10)0.0174 (11)0.0024 (8)0.0068 (8)0.0009 (8)
C60.0097 (9)0.0120 (10)0.0121 (10)0.0006 (8)0.0009 (8)0.0002 (8)
C70.0121 (10)0.0094 (9)0.0103 (9)0.0005 (8)0.0013 (8)0.0017 (8)
C80.0129 (10)0.0135 (10)0.0140 (10)0.0016 (8)0.0031 (8)0.0024 (8)
C90.0181 (11)0.0118 (10)0.0142 (10)0.0054 (8)0.0027 (8)0.0013 (8)
C100.0266 (12)0.0089 (10)0.0093 (10)0.0007 (9)0.0017 (9)0.0005 (8)
C110.0172 (11)0.0164 (11)0.0145 (10)0.0041 (9)0.0074 (8)0.0031 (8)
C120.0133 (10)0.0129 (10)0.0143 (10)0.0015 (8)0.0030 (8)0.0037 (8)
Geometric parameters (Å, º) top
Cu1—N12.0149 (18)C1—C21.525 (3)
Cu1—N1i2.0149 (18)C1—H1A0.9900
Cu1—N22.0313 (18)C1—H1B0.9900
Cu1—N2i2.0313 (18)C2—C31.526 (3)
Cu1—O1W2.4849 (17)C2—H2A0.9900
F1—C81.345 (3)C2—H2B0.9900
F2—C91.337 (3)C3—H3A0.9900
F3—C101.338 (3)C3—H3B0.9900
F4—C111.340 (3)C4—C51.518 (3)
F5—C121.341 (3)C4—H4A0.9900
O1—C61.258 (3)C4—H4B0.9900
O2—C61.236 (3)C5—N2i1.479 (3)
O1W—H110.834 (10)C5—H5A0.9900
O1W—H120.832 (10)C5—H5B0.9900
O2W—H210.833 (10)C6—C71.528 (3)
O2W—H220.830 (10)C7—C81.383 (3)
N1—C31.479 (3)C7—C121.393 (3)
N1—C41.480 (3)C8—C91.383 (3)
N1—H10.859 (10)C9—C101.380 (3)
N2—C5i1.479 (3)C10—C111.376 (3)
N2—C11.482 (3)C11—C121.382 (3)
N2—H20.861 (10)
N1—Cu1—N1i180.00 (9)N1—C3—H3A109.3
N1—Cu1—N293.24 (7)C2—C3—H3A109.3
N1i—Cu1—N286.76 (7)N1—C3—H3B109.3
N1—Cu1—N2i86.76 (7)C2—C3—H3B109.3
N1i—Cu1—N2i93.24 (7)H3A—C3—H3B107.9
N2—Cu1—N2i180.0N1—C4—C5108.02 (17)
N1—Cu1—O1W88.91 (7)N1—C4—H4A110.1
N1i—Cu1—O1W91.09 (7)C5—C4—H4A110.1
N2—Cu1—O1W86.87 (6)N1—C4—H4B110.1
N2i—Cu1—O1W93.13 (6)C5—C4—H4B110.1
Cu1—O1W—H11132 (2)H4A—C4—H4B108.4
Cu1—O1W—H12131 (2)N2i—C5—C4107.48 (17)
H11—O1W—H1297 (3)N2i—C5—H5A110.2
H21—O2W—H22107 (3)C4—C5—H5A110.2
C3—N1—C4111.85 (17)N2i—C5—H5B110.2
C3—N1—Cu1118.22 (13)C4—C5—H5B110.2
C4—N1—Cu1105.50 (13)H5A—C5—H5B108.5
C3—N1—H1110 (2)O2—C6—O1127.9 (2)
C4—N1—H1106 (2)O2—C6—C7117.14 (19)
Cu1—N1—H1104 (2)O1—C6—C7114.94 (19)
C5i—N2—C1112.36 (17)C8—C7—C12116.3 (2)
C5i—N2—Cu1105.50 (13)C8—C7—C6122.22 (19)
C1—N2—Cu1118.01 (14)C12—C7—C6121.49 (19)
C5i—N2—H2106 (2)F1—C8—C9117.3 (2)
C1—N2—H2108.4 (19)F1—C8—C7120.12 (19)
Cu1—N2—H2105.8 (19)C9—C8—C7122.6 (2)
N2—C1—C2111.28 (17)F2—C9—C10120.0 (2)
N2—C1—H1A109.4F2—C9—C8120.5 (2)
C2—C1—H1A109.4C10—C9—C8119.5 (2)
N2—C1—H1B109.4F3—C10—C9119.3 (2)
C2—C1—H1B109.4F3—C10—C11120.9 (2)
H1A—C1—H1B108.0C9—C10—C11119.7 (2)
C3—C2—C1113.62 (18)F4—C11—C10120.3 (2)
C3—C2—H2A108.8F4—C11—C12120.0 (2)
C1—C2—H2A108.8C10—C11—C12119.7 (2)
C3—C2—H2B108.8F5—C12—C11117.48 (19)
C1—C2—H2B108.8F5—C12—C7120.30 (19)
H2A—C2—H2B107.7C11—C12—C7122.2 (2)
N1—C3—C2111.72 (18)
N2—Cu1—N1—C338.53 (15)C12—C7—C8—F1179.30 (19)
N2i—Cu1—N1—C3141.47 (15)C6—C7—C8—F11.4 (3)
O1W—Cu1—N1—C3125.34 (15)C12—C7—C8—C90.5 (3)
N2—Cu1—N1—C4164.50 (13)C6—C7—C8—C9178.8 (2)
N2i—Cu1—N1—C415.50 (13)F1—C8—C9—F20.0 (3)
O1W—Cu1—N1—C4108.70 (13)C7—C8—C9—F2179.9 (2)
N1—Cu1—N2—C5i165.17 (14)F1—C8—C9—C10180.0 (2)
N1i—Cu1—N2—C5i14.83 (14)C7—C8—C9—C100.1 (4)
O1W—Cu1—N2—C5i106.10 (14)F2—C9—C10—F31.8 (3)
N1—Cu1—N2—C138.68 (15)C8—C9—C10—F3178.2 (2)
N1i—Cu1—N2—C1141.32 (15)F2—C9—C10—C11179.7 (2)
O1W—Cu1—N2—C1127.41 (15)C8—C9—C10—C110.3 (3)
C5i—N2—C1—C2179.95 (17)F3—C10—C11—F40.7 (3)
Cu1—N2—C1—C256.8 (2)C9—C10—C11—F4179.1 (2)
N2—C1—C2—C369.8 (2)F3—C10—C11—C12178.7 (2)
C4—N1—C3—C2179.63 (17)C9—C10—C11—C120.3 (3)
Cu1—N1—C3—C256.8 (2)F4—C11—C12—F50.2 (3)
C1—C2—C3—N169.8 (2)C10—C11—C12—F5179.2 (2)
C3—N1—C4—C5172.46 (17)F4—C11—C12—C7178.4 (2)
Cu1—N1—C4—C542.67 (18)C10—C11—C12—C71.0 (4)
N1—C4—C5—N2i58.0 (2)C8—C7—C12—F5179.24 (19)
O2—C6—C7—C8132.7 (2)C6—C7—C12—F50.1 (3)
O1—C6—C7—C847.8 (3)C8—C7—C12—C111.1 (3)
O2—C6—C7—C1248.0 (3)C6—C7—C12—C11178.2 (2)
O1—C6—C7—C12131.5 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2wii0.86 (1)2.17 (2)2.997 (2)157 (3)
N2—H2···O1w0.86 (1)2.70 (3)3.123 (2)112 (2)
O1w—H11···O2ii0.83 (1)1.98 (1)2.785 (2)162 (3)
O1w—H12···O2w0.83 (1)2.10 (2)2.898 (2)160 (3)
O2w—H21···O10.83 (1)1.90 (1)2.723 (2)169 (3)
O2w—H22···O1iii0.83 (1)2.08 (2)2.842 (2)152 (4)
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C10H24N4)(H2O)2](C7F5O2)2·2H2O
Mr758.08
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.1976 (6), 8.7632 (7), 12.1574 (10)
α, β, γ (°)79.378 (1), 75.408 (1), 80.606 (1)
V3)723.85 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.35 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.750, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
6996, 3306, 3028
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.111, 1.06
No. of reflections3306
No. of parameters238
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.75

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2wi0.86 (1)2.17 (2)2.997 (2)157 (3)
N2—H2···O1w0.86 (1)2.70 (3)3.123 (2)112 (2)
O1w—H11···O2i0.83 (1)1.98 (1)2.785 (2)162 (3)
O1w—H12···O2w0.83 (1)2.10 (2)2.898 (2)160 (3)
O2w—H21···O10.83 (1)1.90 (1)2.723 (2)169 (3)
O2w—H22···O1ii0.83 (1)2.08 (2)2.842 (2)152 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.
 

Acknowledgements

We thank the University of Malaya (RG039/09SUS) and the Ministry of Higher Education (FP017/2009) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationHunter, T. M., McNae, I. W., Liang, X., Bella, J., Parsons, S., Walkinshaw, M. D. & Sadler, P. J. (2005). Proc. Natl Acad. Sci. USA, 102, 2288–2292.  Web of Science CSD CrossRef PubMed CAS
First citationLindoy, L. F., Mahinay, M. S., Skelton, B. W. & White, A. H. (2003). J. Coord. Chem. 56, 1203–1213.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds