metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[rac-2-(1-Amino­eth­yl)phenyl-κ2C1,N](ethyl­endi­amine-κ2N,N′)palladium(II) 3-methyl­benzoate monohydrate

aDepartment of Inorganic Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu 1, RO-011061 Bucharest, Romania, and bInstitut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
*Correspondence e-mail: ullrich.englert@ac.rwth-aachen.de

(Received 5 July 2010; accepted 15 July 2010; online 21 July 2010)

In the title compound, [Pd(C8H10N)(C2H8N2)](C8H7O2)·H2O, the palladium ion is coordinated in a distorted square-planar fashion by the two N atoms from the chelating ethyl­enediamine group and by the N and a C atom of the deprotonated chiral amine. The resulting cationic complex, the 3-methyl­benzoate anion and the hydrate water mol­ecule are inter­connected by N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For related organopalladium complexes with chelating oxygen donor ligands, see: Calmuschi & Englert (2002[Calmuschi, B. & Englert, U. (2002). Acta Cryst. C58, m545-m548.], 2005a[Calmuschi, B. & Englert, U. (2005a). Acta Cryst. E61, m164-m165.],b[Calmuschi, B. & Englert, U. (2005b). Acta Cryst. E61, m166-m167.],c[Calmuschi, B. & Englert, U. (2005c). Acta Cryst. E61, m168-m170.]); Calmuschi et al. (2004[Calmuschi, B., Jonas, A. E. & Englert, U. (2004). Acta Cryst. C60, m320-m323.]). For related organopalladium complexes with nitro­gen donor ligands see: Kalf et al. (2006[Kalf, I., Wang, R. & Englert, U. (2006). J. Organomet. Chem. 691, 2277-2285.], 2008[Kalf, I., Wang, R. & Englert, U. (2008). CrystEngComm, 10, 39-47.]); Şerb et al. (2010[Şerb, M.-D., Kalf, I. & Englert, U. (2010). Acta Cryst. E66, m977.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Etter (1991[Etter, M. C. (1991). J. Phys. Chem. 95, 4601-4610.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C8H10N)(C2H8N2)](C8H7O2)·H2O

  • Mr = 439.83

  • Triclinic, [P \overline 1]

  • a = 7.4787 (4) Å

  • b = 10.7659 (6) Å

  • c = 12.8385 (7) Å

  • α = 86.1515 (10)°

  • β = 77.3669 (9)°

  • γ = 72.5557 (9)°

  • V = 962.28 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 110 K

  • 0.45 × 0.35 × 0.09 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (MULABS; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.666, Tmax = 0.917

  • 10302 measured reflections

  • 4367 independent reflections

  • 4124 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.057

  • S = 1.06

  • 4367 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—C5 1.9866 (18)
Pd1—N3 2.0325 (15)
Pd1—N2 2.0603 (15)
Pd1—N1 2.1358 (16)
C5—Pd1—N3 81.77 (7)
C5—Pd1—N2 99.62 (7)
N3—Pd1—N2 175.94 (6)
C5—Pd1—N1 176.54 (6)
N3—Pd1—N1 96.51 (6)
N2—Pd1—N1 82.30 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.92 2.17 3.032 (2) 155
N1—H1B⋯O1ii 0.92 2.25 3.052 (2) 145
N2—H2B⋯O3 0.92 2.12 2.958 (2) 151
N3—H3A⋯O1ii 0.92 2.09 2.947 (2) 153
N3—H3B⋯O2 0.92 1.98 2.885 (2) 167
O3—H3D⋯O1iii 0.84 1.95 2.786 (2) 178
O3—H3E⋯O2i 0.84 1.89 2.723 (2) 171
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y, -z; (iii) x-1, y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconson, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconson, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The complex cation (Fig. 1) is essentially square planar: the distance of the metal center to the least-squares plane through the coordinating atoms amounts to 0.00805 (14) Å. The bond lengths between palladium and ethylenediamine nitrogen atoms differ significantly: The Pd—N distance trans to carbon is 2.1358 (16) Å and hence longer than the bond to the N donor atom trans to the amino group, 2.0603 (15) Å (Table 1). This observation is in agreement with the distance pattern observed for related organopalladium complexes with chelating oxygen donor ligands (Calmuschi & Englert, 2002; Calmuschi et al., 2004; Calmuschi & Englert, 2005a; Calmuschi & Englert, 2005b; Calmuschi & Englert, 2005c) and nitrogen donor ligands (Kalf et al., 2006; Kalf et al., 2008). The title compound forms a two-dimensional network extending in the a and b directions via moderately strong N—H···O and O—H···O hydrogen bonds. With the exception of H2a (attached to N2 of the ethylendiamine ligand) all potential H donors find an acceptor in reasonable geometry for hydrogen bonding (Fig. 2) giving rise to C42(8) and C32(6) motifs in the a direction and C33(10) motifs in the b direction (Etter et al., 1990; Etter, 1991). The hydrogen bond parameters are presented in Table 2. The flat cationic complexes form stacks extending in [100] direction; the shortest Pd···Pd separation amounts to 4.2157 (3) Å. Figure 3 shows the packing diagram of the title compound. The molecular volume of the title compound (calculated as V/Z) is very similar to the molecular volume of {(rac)-[2-(1-aminoethyl)phenyl -κ2-C1,N](ethylendiamine)palladium(II)} 3,5-dimethylbenzoate compound reported in our paper (Şerb et al., 2010). The solvent water molecule compensates the smaller size of the anion in the title compound.

Related literature top

For related organopalladium complexes with chelating oxygen donor ligands, see: Calmuschi & Englert (2002, 2005a,b,c); Calmuschi et al. (2004). For related organopalladium complexes with nitrogen donor ligands see: Kalf et al. (2006, 2008); Şerb et al. (2010). For hydrogen-bond motifs, see: Etter et al. (1990); Etter (1991).

Experimental top

46 mg (0.76 mmol) ethylenediamine are added to a solution of 200 mg (0.38 mmol) [{Pd(µ-Cl)(C6H4CH-MeNH2)}2] (Calmuschi & Englert, 2002) in 50 ml MeOH at 50 ° C. 185 mg (0.76 mmol) silver-3-methylbenzoate are added; the suspension is stirred for 30 min and allowed to cool to room temperature, and AgCl is removed by filtration. After evaporation of the solvent in vacuo, the product is obtained in almost quantitative yield. Slow evaporation of the solvent under ambient conditions gives crystals suitable for X-ray diffraction.

Refinement top

H atoms attached to oxygen were located from difference Fourier map and their bonding distances were idealized to O—H 0.84 Å. They were treated as riding with Uiso(H) = 1.5Ueq(O) and H atoms attached to nitrogen and carbon were calculated and introduced in their idealized positions with Caryl—H 0.95 Å, Uiso(H) = 1.2Ueq(C); Cmethyl—H 0.98 Å, Uiso(H) = 1.5Ueq(C); Cethylene—H 0.99 Å, Uiso(H) = 1.2Ueq(C) and N—H 0.92 Å, Uiso(H) = 1.2Ueq(N). The methyl groups were allowed to rotate but not to tip. All hydrogen atoms were refined using a riding model.

Structure description top

The complex cation (Fig. 1) is essentially square planar: the distance of the metal center to the least-squares plane through the coordinating atoms amounts to 0.00805 (14) Å. The bond lengths between palladium and ethylenediamine nitrogen atoms differ significantly: The Pd—N distance trans to carbon is 2.1358 (16) Å and hence longer than the bond to the N donor atom trans to the amino group, 2.0603 (15) Å (Table 1). This observation is in agreement with the distance pattern observed for related organopalladium complexes with chelating oxygen donor ligands (Calmuschi & Englert, 2002; Calmuschi et al., 2004; Calmuschi & Englert, 2005a; Calmuschi & Englert, 2005b; Calmuschi & Englert, 2005c) and nitrogen donor ligands (Kalf et al., 2006; Kalf et al., 2008). The title compound forms a two-dimensional network extending in the a and b directions via moderately strong N—H···O and O—H···O hydrogen bonds. With the exception of H2a (attached to N2 of the ethylendiamine ligand) all potential H donors find an acceptor in reasonable geometry for hydrogen bonding (Fig. 2) giving rise to C42(8) and C32(6) motifs in the a direction and C33(10) motifs in the b direction (Etter et al., 1990; Etter, 1991). The hydrogen bond parameters are presented in Table 2. The flat cationic complexes form stacks extending in [100] direction; the shortest Pd···Pd separation amounts to 4.2157 (3) Å. Figure 3 shows the packing diagram of the title compound. The molecular volume of the title compound (calculated as V/Z) is very similar to the molecular volume of {(rac)-[2-(1-aminoethyl)phenyl -κ2-C1,N](ethylendiamine)palladium(II)} 3,5-dimethylbenzoate compound reported in our paper (Şerb et al., 2010). The solvent water molecule compensates the smaller size of the anion in the title compound.

For related organopalladium complexes with chelating oxygen donor ligands, see: Calmuschi & Englert (2002, 2005a,b,c); Calmuschi et al. (2004). For related organopalladium complexes with nitrogen donor ligands see: Kalf et al. (2006, 2008); Şerb et al. (2010). For hydrogen-bond motifs, see: Etter et al. (1990); Etter (1991).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : PLATON (Spek, 2009) plot with displacement ellipsoids at 50% probability; H atoms are represented by spheres of arbitrary radius.
[Figure 2] Fig. 2. : Hydrogen-bond motifs. The tolyl group of the anion, the methyl group attached to the cation and H atoms attached to carbon have been omitted for clarity.
[Figure 3] Fig. 3. : Packing diagram of the title compound. The dashed lines indicate the hydrogen bonds. H atoms not involved in H bonding have been omitted for clarity.
[rac-2-(1-Aminoethyl)phenyl-κ2C1,N](ethylendiamine- κ2N,N')palladium(II) 3-methylbenzoate monohydrate top
Crystal data top
[Pd(C8H10N)(C2H8N2)](C8H7O2)·H2OZ = 2
Mr = 439.83F(000) = 452
Triclinic, P1Dx = 1.518 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4787 (4) ÅCell parameters from 8130 reflections
b = 10.7659 (6) Åθ = 2.6–29.6°
c = 12.8385 (7) ŵ = 0.99 mm1
α = 86.1515 (10)°T = 110 K
β = 77.3669 (9)°Plate, colourless
γ = 72.5557 (9)°0.45 × 0.35 × 0.09 mm
V = 962.28 (9) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4367 independent reflections
Radiation source: fine-focus sealed tube4124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(MULABS; Blessing, 1995; Spek, 2009)
h = 99
Tmin = 0.666, Tmax = 0.917k = 1312
10302 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.029P)2 + 0.250P]
where P = (Fo2 + 2Fc2)/3
4367 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Pd(C8H10N)(C2H8N2)](C8H7O2)·H2Oγ = 72.5557 (9)°
Mr = 439.83V = 962.28 (9) Å3
Triclinic, P1Z = 2
a = 7.4787 (4) ÅMo Kα radiation
b = 10.7659 (6) ŵ = 0.99 mm1
c = 12.8385 (7) ÅT = 110 K
α = 86.1515 (10)°0.45 × 0.35 × 0.09 mm
β = 77.3669 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4367 independent reflections
Absorption correction: multi-scan
(MULABS; Blessing, 1995; Spek, 2009)
4124 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.917Rint = 0.029
10302 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.06Δρmax = 0.61 e Å3
4367 reflectionsΔρmin = 0.66 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.262512 (17)0.365016 (12)0.016645 (10)0.01519 (5)
N10.4171 (2)0.31370 (15)0.14272 (13)0.0213 (3)
H1A0.54410.27260.14260.026*
H1B0.36850.25730.17060.026*
N20.2346 (2)0.55102 (15)0.04253 (12)0.0182 (3)
H2A0.11520.58590.05820.022*
H2B0.24730.60300.00780.022*
N30.2764 (2)0.18062 (15)0.06898 (13)0.0199 (3)
H3A0.26250.13390.01540.024*
H3B0.39530.14130.08400.024*
C10.3998 (3)0.43285 (19)0.20908 (15)0.0236 (4)
H1C0.28450.45160.24020.028*
H1D0.51340.41990.26830.028*
C20.3848 (3)0.54598 (19)0.14036 (16)0.0228 (4)
H2C0.50940.53520.12070.027*
H2D0.35190.62840.18070.027*
C30.1254 (3)0.17635 (18)0.16679 (15)0.0210 (4)
H30.00720.17440.14350.025*
C40.0812 (2)0.30251 (18)0.22643 (15)0.0186 (4)
C50.1326 (2)0.40622 (17)0.16797 (14)0.0165 (3)
C60.0967 (2)0.52285 (17)0.22272 (15)0.0187 (4)
H60.13160.59410.18540.022*
C70.0114 (3)0.53561 (18)0.33022 (15)0.0219 (4)
H70.00930.61470.36600.026*
C80.0441 (3)0.43363 (19)0.38601 (15)0.0230 (4)
H80.10550.44340.45930.028*
C90.0090 (3)0.31723 (18)0.33368 (15)0.0218 (4)
H90.04680.24720.37140.026*
C100.1912 (3)0.05407 (19)0.23164 (17)0.0266 (4)
H10A0.22220.02280.18690.040*
H10B0.08850.05080.29310.040*
H10C0.30520.05540.25680.040*
O10.8057 (2)0.11594 (14)0.13161 (12)0.0306 (3)
O20.6595 (2)0.09451 (16)0.10904 (12)0.0341 (4)
C110.7254 (2)0.00144 (19)0.16557 (15)0.0213 (4)
C120.7075 (2)0.02334 (18)0.28219 (15)0.0188 (4)
C130.6029 (3)0.14472 (18)0.32649 (16)0.0232 (4)
H130.53830.21050.28320.028*
C140.5904 (3)0.1720 (2)0.43227 (18)0.0325 (5)
C150.6858 (3)0.0748 (3)0.49358 (18)0.0377 (5)
H150.68110.09210.56590.045*
C160.7876 (3)0.0468 (2)0.45182 (18)0.0369 (5)
H160.85070.11250.49570.044*
C170.7985 (3)0.0739 (2)0.34628 (17)0.0266 (4)
H170.86750.15810.31790.032*
C180.4756 (4)0.3051 (3)0.4784 (2)0.0514 (7)
H18A0.41770.29600.55370.077*
H18B0.37450.34510.43880.077*
H18C0.56050.36030.47270.077*
O30.20334 (18)0.78816 (13)0.07252 (11)0.0238 (3)
H3D0.08340.81550.09090.036*
H3E0.23500.83110.01830.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01435 (7)0.01388 (8)0.01678 (8)0.00175 (5)0.00503 (5)0.00128 (5)
N10.0200 (7)0.0219 (8)0.0217 (8)0.0047 (6)0.0047 (6)0.0035 (6)
N20.0156 (7)0.0191 (8)0.0209 (8)0.0047 (6)0.0065 (6)0.0001 (6)
N30.0226 (8)0.0156 (8)0.0204 (8)0.0019 (6)0.0061 (6)0.0034 (6)
C10.0212 (9)0.0295 (11)0.0196 (10)0.0064 (8)0.0048 (7)0.0002 (8)
C20.0210 (9)0.0247 (10)0.0230 (10)0.0082 (7)0.0043 (7)0.0030 (8)
C30.0230 (9)0.0182 (9)0.0232 (10)0.0068 (7)0.0070 (7)0.0001 (7)
C40.0172 (8)0.0178 (9)0.0217 (10)0.0032 (7)0.0086 (7)0.0005 (7)
C50.0137 (7)0.0183 (9)0.0177 (9)0.0026 (6)0.0066 (6)0.0004 (7)
C60.0178 (8)0.0167 (9)0.0222 (9)0.0038 (7)0.0074 (7)0.0004 (7)
C70.0237 (9)0.0193 (9)0.0223 (10)0.0023 (7)0.0083 (7)0.0048 (7)
C80.0236 (9)0.0260 (10)0.0176 (9)0.0031 (8)0.0059 (7)0.0015 (7)
C90.0239 (9)0.0212 (10)0.0214 (10)0.0068 (7)0.0080 (7)0.0040 (7)
C100.0302 (10)0.0197 (10)0.0314 (11)0.0086 (8)0.0084 (8)0.0025 (8)
O10.0268 (7)0.0314 (8)0.0339 (8)0.0081 (6)0.0037 (6)0.0131 (6)
O20.0269 (7)0.0463 (10)0.0246 (8)0.0042 (7)0.0081 (6)0.0102 (7)
C110.0136 (8)0.0284 (10)0.0227 (10)0.0076 (7)0.0032 (7)0.0013 (8)
C120.0177 (8)0.0192 (9)0.0216 (10)0.0080 (7)0.0055 (7)0.0030 (7)
C130.0218 (9)0.0196 (10)0.0276 (11)0.0083 (7)0.0013 (7)0.0017 (8)
C140.0300 (11)0.0368 (12)0.0323 (12)0.0178 (9)0.0044 (9)0.0114 (9)
C150.0389 (12)0.0616 (16)0.0210 (11)0.0279 (12)0.0040 (9)0.0046 (10)
C160.0345 (11)0.0505 (15)0.0305 (12)0.0166 (11)0.0158 (9)0.0173 (10)
C170.0228 (9)0.0242 (10)0.0328 (11)0.0061 (8)0.0087 (8)0.0061 (8)
C180.0485 (15)0.0466 (16)0.0556 (17)0.0184 (12)0.0105 (12)0.0275 (13)
O30.0220 (6)0.0194 (7)0.0277 (8)0.0038 (5)0.0036 (5)0.0009 (5)
Geometric parameters (Å, º) top
Pd1—C51.9866 (18)C7—H70.9500
Pd1—N32.0325 (15)C8—C91.389 (3)
Pd1—N22.0603 (15)C8—H80.9500
Pd1—N12.1358 (16)C9—H90.9500
N1—C11.480 (2)C10—H10A0.9800
N1—H1A0.9200C10—H10B0.9800
N1—H1B0.9200C10—H10C0.9800
N2—C21.483 (2)O1—C111.259 (2)
N2—H2A0.9200O2—C111.260 (2)
N2—H2B0.9200C11—C121.508 (3)
N3—C31.502 (2)C12—C131.391 (3)
N3—H3A0.9200C12—C171.392 (3)
N3—H3B0.9200C13—C141.386 (3)
C1—C21.514 (3)C13—H130.9500
C1—H1C0.9900C14—C151.383 (3)
C1—H1D0.9900C14—C181.515 (3)
C2—H2C0.9900C15—C161.378 (3)
C2—H2D0.9900C15—H150.9500
C3—C41.517 (3)C16—C171.385 (3)
C3—C101.521 (3)C16—H160.9500
C3—H31.0000C17—H170.9500
C4—C91.391 (3)C18—H18A0.9800
C4—C51.406 (3)C18—H18B0.9800
C5—C61.406 (3)C18—H18C0.9800
C6—C71.385 (3)O3—H3D0.8401
C6—H60.9500O3—H3E0.8400
C7—C81.389 (3)
C5—Pd1—N381.77 (7)C4—C5—Pd1114.64 (13)
C5—Pd1—N299.62 (7)C7—C6—C5121.12 (17)
N3—Pd1—N2175.94 (6)C7—C6—H6119.4
C5—Pd1—N1176.54 (6)C5—C6—H6119.4
N3—Pd1—N196.51 (6)C6—C7—C8120.47 (18)
N2—Pd1—N182.30 (6)C6—C7—H7119.8
C1—N1—Pd1109.38 (11)C8—C7—H7119.8
C1—N1—H1A109.8C7—C8—C9119.39 (18)
Pd1—N1—H1A109.8C7—C8—H8120.3
C1—N1—H1B109.8C9—C8—H8120.3
Pd1—N1—H1B109.8C8—C9—C4120.47 (18)
H1A—N1—H1B108.2C8—C9—H9119.8
C2—N2—Pd1108.98 (11)C4—C9—H9119.8
C2—N2—H2A109.9C3—C10—H10A109.5
Pd1—N2—H2A109.9C3—C10—H10B109.5
C2—N2—H2B109.9H10A—C10—H10B109.5
Pd1—N2—H2B109.9C3—C10—H10C109.5
H2A—N2—H2B108.3H10A—C10—H10C109.5
C3—N3—Pd1112.76 (11)H10B—C10—H10C109.5
C3—N3—H3A109.0O1—C11—O2124.72 (19)
Pd1—N3—H3A109.0O1—C11—C12117.85 (17)
C3—N3—H3B109.0O2—C11—C12117.42 (17)
Pd1—N3—H3B109.0C13—C12—C17119.18 (18)
H3A—N3—H3B107.8C13—C12—C11120.29 (17)
N1—C1—C2109.21 (16)C17—C12—C11120.52 (17)
N1—C1—H1C109.8C14—C13—C12121.58 (19)
C2—C1—H1C109.8C14—C13—H13119.2
N1—C1—H1D109.8C12—C13—H13119.2
C2—C1—H1D109.8C15—C14—C13118.1 (2)
H1C—C1—H1D108.3C15—C14—C18121.4 (2)
N2—C2—C1109.42 (15)C13—C14—C18120.5 (2)
N2—C2—H2C109.8C16—C15—C14121.3 (2)
C1—C2—H2C109.8C16—C15—H15119.4
N2—C2—H2D109.8C14—C15—H15119.4
C1—C2—H2D109.8C15—C16—C17120.4 (2)
H2C—C2—H2D108.2C15—C16—H16119.8
N3—C3—C4106.57 (15)C17—C16—H16119.8
N3—C3—C10110.65 (15)C16—C17—C12119.4 (2)
C4—C3—C10114.39 (16)C16—C17—H17120.3
N3—C3—H3108.4C12—C17—H17120.3
C4—C3—H3108.4C14—C18—H18A109.5
C10—C3—H3108.4C14—C18—H18B109.5
C9—C4—C5120.81 (17)H18A—C18—H18B109.5
C9—C4—C3122.18 (17)C14—C18—H18C109.5
C5—C4—C3117.00 (16)H18A—C18—H18C109.5
C6—C5—C4117.69 (17)H18B—C18—H18C109.5
C6—C5—Pd1127.58 (14)H3D—O3—H3E106.6
C5—Pd1—N1—C1130.9 (10)N3—Pd1—C5—C411.99 (12)
N3—Pd1—N1—C1169.22 (12)N2—Pd1—C5—C4164.14 (12)
N2—Pd1—N1—C16.87 (12)N1—Pd1—C5—C472.3 (11)
C5—Pd1—N2—C2157.14 (12)C4—C5—C6—C70.8 (2)
N3—Pd1—N2—C293.1 (8)Pd1—C5—C6—C7177.17 (13)
N1—Pd1—N2—C219.95 (12)C5—C6—C7—C81.2 (3)
C5—Pd1—N3—C323.45 (12)C6—C7—C8—C91.6 (3)
N2—Pd1—N3—C386.9 (8)C7—C8—C9—C40.1 (3)
N1—Pd1—N3—C3159.57 (12)C5—C4—C9—C82.2 (3)
Pd1—N1—C1—C231.87 (17)C3—C4—C9—C8178.88 (17)
Pd1—N2—C2—C143.43 (17)O1—C11—C12—C13173.31 (17)
N1—C1—C2—N250.20 (19)O2—C11—C12—C137.0 (3)
Pd1—N3—C3—C428.71 (17)O1—C11—C12—C178.0 (3)
Pd1—N3—C3—C10153.65 (13)O2—C11—C12—C17171.65 (17)
N3—C3—C4—C9161.25 (16)C17—C12—C13—C141.4 (3)
C10—C3—C4—C938.6 (2)C11—C12—C13—C14177.30 (17)
N3—C3—C4—C519.8 (2)C12—C13—C14—C150.1 (3)
C10—C3—C4—C5142.38 (17)C12—C13—C14—C18179.93 (19)
C9—C4—C5—C62.5 (2)C13—C14—C15—C161.2 (3)
C3—C4—C5—C6178.52 (15)C18—C14—C15—C16179.0 (2)
C9—C4—C5—Pd1179.33 (13)C14—C15—C16—C170.8 (3)
C3—C4—C5—Pd11.7 (2)C15—C16—C17—C120.7 (3)
N3—Pd1—C5—C6164.48 (16)C13—C12—C17—C161.8 (3)
N2—Pd1—C5—C619.39 (16)C11—C12—C17—C16176.90 (17)
N1—Pd1—C5—C6104.2 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.922.173.032 (2)155
N1—H1B···O1ii0.922.253.052 (2)145
N2—H2B···O30.922.122.958 (2)151
N3—H3A···O1ii0.922.092.947 (2)153
N3—H3B···O20.921.982.885 (2)167
O3—H3D···O1iii0.841.952.786 (2)178
O3—H3E···O2i0.841.892.723 (2)171
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Pd(C8H10N)(C2H8N2)](C8H7O2)·H2O
Mr439.83
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)7.4787 (4), 10.7659 (6), 12.8385 (7)
α, β, γ (°)86.1515 (10), 77.3669 (9), 72.5557 (9)
V3)962.28 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.45 × 0.35 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(MULABS; Blessing, 1995; Spek, 2009)
Tmin, Tmax0.666, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
10302, 4367, 4124
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.06
No. of reflections4367
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.66

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pd1—C51.9866 (18)Pd1—N22.0603 (15)
Pd1—N32.0325 (15)Pd1—N12.1358 (16)
C5—Pd1—N381.77 (7)C5—Pd1—N1176.54 (6)
C5—Pd1—N299.62 (7)N3—Pd1—N196.51 (6)
N3—Pd1—N2175.94 (6)N2—Pd1—N182.30 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.922.173.032 (2)155
N1—H1B···O1ii0.922.253.052 (2)145
N2—H2B···O30.922.122.958 (2)151
N3—H3A···O1ii0.922.092.947 (2)153
N3—H3B···O20.921.982.885 (2)167
O3—H3D···O1iii0.841.952.786 (2)178
O3—H3E···O2i0.841.892.723 (2)171
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x1, y+1, z.
 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationCalmuschi, B. & Englert, U. (2002). Acta Cryst. C58, m545–m548.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCalmuschi, B. & Englert, U. (2005a). Acta Cryst. E61, m164–m165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCalmuschi, B. & Englert, U. (2005b). Acta Cryst. E61, m166–m167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCalmuschi, B. & Englert, U. (2005c). Acta Cryst. E61, m168–m170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCalmuschi, B., Jonas, A. E. & Englert, U. (2004). Acta Cryst. C60, m320–m323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1991). J. Phys. Chem. 95, 4601–4610.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKalf, I., Wang, R. & Englert, U. (2006). J. Organomet. Chem. 691, 2277–2285.  Web of Science CSD CrossRef CAS Google Scholar
First citationKalf, I., Wang, R. & Englert, U. (2008). CrystEngComm, 10, 39–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationŞerb, M.-D., Kalf, I. & Englert, U. (2010). Acta Cryst. E66, m977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds