organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Hy­dr­oxy-6-meth­­oxy-2H-chromen-2-one

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 21 July 2010; accepted 22 July 2010; online 31 July 2010)

The title compound, C10H8O4, is one of the coumarins existing in Morinda citrifolia L (Noni). The chromenone ring system is approximately planar with a maximum deviation of 0.0208 (14) Å. The meth­oxy group does not deviate from this plane [C—O—C—C torsion angle = −1.5 (3)°], indicating that the whole mol­ecule is almost planar. In the crystal packing, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains. These are further connected by C—H⋯O hydrogen bonds.

Related literature

For background and the biological activity of Morinda citrifolia L, see: Wang et al. (2002[Wang, M. Y., West, B. J., Jensen, C. J., Nowicki, D., Chen, S., Palu, A. K. & Anderson, G. (2002). Acta Pharmacol. Sin. 12, 1127-1141.]); Samoylenko et al. (2006[Samoylenko, V., Zhao, J. P., Dunbar, D. C., Khan, I. A., Rushing, J. W. & Muhammad, I. (2006). J. Agric. Food Chem. 54, 6398-6402.]); Silva et al. (2001[Silva, W. P. K., Deraniyagala, S. A., Wijesundera, R. L. C., Karunanayake, E. H. & Priyanka, U. M. S. (2001). Mycopathologia, 153, 199-202.]); Goy et al. (1993[Goy, P. A., Signer, H., Reist, R., Aichholz, R., Blum, W., Schmidt, E. & Kessmann, H. (1993). Planta, 191, 200-206.]); Cassady et al. (1979[Cassady, J. M., Ojima, N., Chang, C. & McLaughlin, J. L. (1979). J. Nat. Prod. 42, 274-278.]); Shaw et al. (2003[Shaw, C. Y., Chen, C. H., Hsu, C. C., Chen, C. C. & Tsai, Y. C. (2003). Phytother. Res. 17, 823-825.]); Ding et al. (2008[Ding, Z. Q., Dai, Y., Hao, H. P., Pan, R., Yao, X. J. & Wang, Z. T. (2008). Pharm. Biol. 46, 854-860.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8O4

  • Mr = 192.16

  • Orthorhombic, P n a 21

  • a = 7.0771 (2) Å

  • b = 17.3485 (4) Å

  • c = 6.9672 (2) Å

  • V = 855.41 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.39 × 0.11 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.991

  • 9630 measured reflections

  • 1364 independent reflections

  • 1213 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.07

  • 1364 reflections

  • 132 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O2i 0.92 (3) 1.85 (3) 2.6558 (17) 146 (3)
C5—H5A⋯O2ii 0.93 2.48 3.345 (2) 154
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Morinda citrifolia L (Noni) has been used in folk remedies by Polynesians for over 2000 years (Wang et al., 2002). 7-Hydroxy-6-methoxy-2H-chromen-2-one (Scopoletin), a yellow to beige crystalline powder, is one of the coumarins present in Morinda citrifolia. The reference (Samoylenko et al., 2006) suggested Scopoletin as a marker constituent for quality control of Noni. This compound is reported to have a broad range of therapeutic effects including antimicrobial (Silva et al., 2001; Goy et al., 1993), antitumor (Cassady et al., 1979), antioxidant (Shaw et al., 2003), anti-inflammatory (Ding et al., 2008) properties.

In the title compound, Fig. 1, the chromenone ring system (C1–C9/O1/O2) is approximately planar with a maximum deviation of 0.0208 (14) Å at atom C5. This mean plane forms a dihedral angle of 1.67 (8)° with the methoxy group (O4/C10) attached to it, indicating that the whole molecule is almost planar.

In the crystal packing, Fig. 2, intermolecular O3—H1O3···O2 and C5—H5A···O2 hydrogen bonds (Table 1) link the molecules into two-dimensional planes parallel to bc plane.

Related literature top

For background and the biological activity of Morinda citrifolia L, see: Wang et al. (2002); Samoylenko et al. (2006); Silva et al. (2001); Goy et al. (1993); Cassady et al. (1979); Shaw et al. (2003); Ding et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The raw materials of Morinda citrifolia were collected from Kampung Seronok, Penang, Malaysia. A voucher specimen (No. 10612) has been deposited at the herbarium of the School of Biological Sciences, Universiti Sains Malaysia. The plant samples were cleaned with water and dried in oven at 55°C for 3 days. The dried powdered fruit of Morinda citrifolia was repeatedly extracted by soxhlet extractor by using fresh methanol for 5 days. The pooled methanol extracts were evaporated to yield 18.0% residue. A portion of these methanolic extracts was reconstituted in distilled water and partitioned sequentially with equal volume of chloroform (CHCl3), ethyl acetate (EA) and n-butanol (BuOH). The eluates were dried to yield 11.1%, 9.0%, 20.2% of CHCl3 fraction, EA fraction and BuOH fraction respectively. The CHCl3 fraction was subjected to column chromatography and was eluted sequentially with of petroleum ether, petroleum ether-chloroform mixtures (99:1, 95:5, 90:10, 85:15; 80:20, 75:25, 70:30, 65:35, 60:40, 55:45, 50:50, 40:60, 30:70, 20:80, 10:90), chloroform and chloroform-methanol mixtures (99:1, 95:5, 90:10, 85:15; 80:20, 75:25, 70:30, 65:35, 60:40, 55:45, 50:50, 40:60, 30:70, 20:80, 10:90) and methanol. Fractions eluted from the petroleum ether-chloroform mixture (90:10) yielded a yellowish-orange amorphous powder (82.5 mg). Yellow colour crystals suitable for X-ray crystallography were obtained upon repeated recrystallization with chloroform. The molecular weight of the titled compound found to be 192 and the melting point is 477–479 K.

Refinement top

The H atom bonded to O was located from a difference Fourier map and was refined freely [O–H = 0.92 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group. In the absence of significant anomalous dispersion, 879 Friedel pairs were merged for the final refinement.

Structure description top

Morinda citrifolia L (Noni) has been used in folk remedies by Polynesians for over 2000 years (Wang et al., 2002). 7-Hydroxy-6-methoxy-2H-chromen-2-one (Scopoletin), a yellow to beige crystalline powder, is one of the coumarins present in Morinda citrifolia. The reference (Samoylenko et al., 2006) suggested Scopoletin as a marker constituent for quality control of Noni. This compound is reported to have a broad range of therapeutic effects including antimicrobial (Silva et al., 2001; Goy et al., 1993), antitumor (Cassady et al., 1979), antioxidant (Shaw et al., 2003), anti-inflammatory (Ding et al., 2008) properties.

In the title compound, Fig. 1, the chromenone ring system (C1–C9/O1/O2) is approximately planar with a maximum deviation of 0.0208 (14) Å at atom C5. This mean plane forms a dihedral angle of 1.67 (8)° with the methoxy group (O4/C10) attached to it, indicating that the whole molecule is almost planar.

In the crystal packing, Fig. 2, intermolecular O3—H1O3···O2 and C5—H5A···O2 hydrogen bonds (Table 1) link the molecules into two-dimensional planes parallel to bc plane.

For background and the biological activity of Morinda citrifolia L, see: Wang et al. (2002); Samoylenko et al. (2006); Silva et al. (2001); Goy et al. (1993); Cassady et al. (1979); Shaw et al. (2003); Ding et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing the two-dimensional planes. Intermolecular interactions are shown as dashed lines. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
7-Hydroxy-6-methoxy-2H-chromen-2-one top
Crystal data top
C10H8O4F(000) = 400
Mr = 192.16Dx = 1.492 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3125 reflections
a = 7.0771 (2) Åθ = 2.4–29.9°
b = 17.3485 (4) ŵ = 0.12 mm1
c = 6.9672 (2) ÅT = 100 K
V = 855.41 (4) Å3Needle, yellow
Z = 40.39 × 0.11 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1364 independent reflections
Radiation source: fine-focus sealed tube1213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 30.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 109
Tmin = 0.956, Tmax = 0.991k = 2424
9630 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.1813P]
where P = (Fo2 + 2Fc2)/3
1364 reflections(Δ/σ)max = 0.001
132 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C10H8O4V = 855.41 (4) Å3
Mr = 192.16Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.0771 (2) ŵ = 0.12 mm1
b = 17.3485 (4) ÅT = 100 K
c = 6.9672 (2) Å0.39 × 0.11 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1364 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1213 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.991Rint = 0.035
9630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.33 e Å3
1364 reflectionsΔρmin = 0.26 e Å3
132 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82231 (19)0.37644 (6)0.5023 (2)0.0161 (3)
O20.8589 (2)0.49194 (7)0.3781 (2)0.0221 (3)
O30.7202 (2)0.13880 (7)0.8064 (2)0.0223 (3)
O40.81670 (19)0.05917 (7)0.4922 (2)0.0199 (3)
C10.7724 (3)0.17732 (9)0.6463 (3)0.0153 (3)
C20.7725 (3)0.25710 (9)0.6524 (3)0.0147 (3)
H2A0.73820.28320.76360.018*
C30.8251 (2)0.29720 (9)0.4884 (3)0.0144 (3)
C40.8665 (2)0.42295 (9)0.3488 (3)0.0171 (4)
C50.9176 (3)0.38545 (10)0.1709 (3)0.0182 (4)
H5A0.94610.41520.06370.022*
C60.9243 (2)0.30757 (10)0.1584 (3)0.0171 (3)
H6A0.96060.28460.04370.021*
C70.8762 (3)0.26016 (9)0.3195 (3)0.0145 (3)
C80.8758 (2)0.17879 (9)0.3153 (3)0.0151 (3)
H8A0.90990.15290.20370.018*
C90.8248 (3)0.13773 (9)0.4770 (3)0.0148 (3)
C100.8609 (3)0.01496 (9)0.3244 (3)0.0218 (4)
H10A0.84820.03890.35270.033*
H10B0.98840.02560.28540.033*
H10C0.77580.02860.22260.033*
H1O30.712 (4)0.0869 (16)0.782 (5)0.048 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0216 (6)0.0117 (5)0.0150 (6)0.0002 (4)0.0009 (6)0.0010 (5)
O20.0300 (7)0.0133 (5)0.0230 (8)0.0011 (5)0.0046 (6)0.0033 (5)
O30.0378 (8)0.0135 (5)0.0157 (7)0.0024 (5)0.0077 (7)0.0012 (6)
O40.0300 (7)0.0116 (5)0.0182 (7)0.0008 (5)0.0038 (6)0.0021 (6)
C10.0174 (8)0.0150 (7)0.0135 (9)0.0022 (6)0.0016 (8)0.0022 (7)
C20.0175 (8)0.0149 (7)0.0117 (8)0.0005 (6)0.0008 (8)0.0013 (7)
C30.0153 (7)0.0117 (6)0.0162 (9)0.0009 (6)0.0027 (7)0.0029 (8)
C40.0170 (8)0.0158 (7)0.0185 (10)0.0023 (6)0.0039 (7)0.0064 (7)
C50.0196 (8)0.0193 (7)0.0156 (9)0.0019 (6)0.0017 (8)0.0056 (7)
C60.0166 (8)0.0199 (7)0.0149 (8)0.0002 (6)0.0007 (8)0.0022 (7)
C70.0147 (8)0.0150 (7)0.0138 (9)0.0003 (6)0.0015 (8)0.0006 (7)
C80.0170 (8)0.0150 (7)0.0134 (8)0.0005 (6)0.0006 (8)0.0010 (7)
C90.0158 (8)0.0112 (6)0.0173 (9)0.0001 (6)0.0010 (7)0.0008 (7)
C100.0284 (9)0.0148 (7)0.0223 (10)0.0015 (6)0.0034 (9)0.0064 (8)
Geometric parameters (Å, º) top
O1—C41.376 (2)C4—C51.446 (3)
O1—C31.3781 (18)C5—C61.355 (2)
O2—C41.215 (2)C5—H5A0.9300
O3—C11.352 (2)C6—C71.432 (2)
O3—H1O30.92 (3)C6—H6A0.9300
O4—C91.3682 (18)C7—C81.412 (2)
O4—C101.433 (2)C8—C91.381 (3)
C1—C21.385 (2)C8—H8A0.9300
C1—C91.415 (3)C10—H10A0.9600
C2—C31.388 (3)C10—H10B0.9600
C2—H2A0.9300C10—H10C0.9600
C3—C71.389 (3)
C4—O1—C3121.82 (16)C5—C6—C7120.94 (18)
C1—O3—H1O3111 (2)C5—C6—H6A119.5
C9—O4—C10117.42 (16)C7—C6—H6A119.5
O3—C1—C2117.99 (16)C3—C7—C8118.68 (16)
O3—C1—C9121.33 (15)C3—C7—C6117.39 (14)
C2—C1—C9120.68 (16)C8—C7—C6123.93 (17)
C1—C2—C3118.44 (16)C9—C8—C7119.95 (16)
C1—C2—H2A120.8C9—C8—H8A120.0
C3—C2—H2A120.8C7—C8—H8A120.0
O1—C3—C2116.00 (17)O4—C9—C8126.04 (17)
O1—C3—C7121.65 (16)O4—C9—C1114.05 (17)
C2—C3—C7122.35 (14)C8—C9—C1119.90 (14)
O2—C4—O1115.91 (18)O4—C10—H10A109.5
O2—C4—C5126.75 (17)O4—C10—H10B109.5
O1—C4—C5117.34 (14)H10A—C10—H10B109.5
C6—C5—C4120.84 (17)O4—C10—H10C109.5
C6—C5—H5A119.6H10A—C10—H10C109.5
C4—C5—H5A119.6H10B—C10—H10C109.5
O3—C1—C2—C3179.72 (16)C2—C3—C7—C6178.81 (16)
C9—C1—C2—C30.1 (3)C5—C6—C7—C30.8 (3)
C4—O1—C3—C2178.29 (15)C5—C6—C7—C8178.45 (16)
C4—O1—C3—C71.2 (2)C3—C7—C8—C90.2 (2)
C1—C2—C3—O1179.84 (14)C6—C7—C8—C9179.06 (17)
C1—C2—C3—C70.3 (3)C10—O4—C9—C81.5 (3)
C3—O1—C4—O2179.90 (15)C10—O4—C9—C1177.71 (15)
C3—O1—C4—C50.3 (2)C7—C8—C9—O4179.38 (15)
O2—C4—C5—C6178.64 (18)C7—C8—C9—C10.2 (3)
O1—C4—C5—C61.1 (3)O3—C1—C9—O40.2 (3)
C4—C5—C6—C71.7 (3)C2—C1—C9—O4179.60 (15)
O1—C3—C7—C8179.93 (14)O3—C1—C9—C8179.42 (15)
C2—C3—C7—C80.5 (3)C2—C1—C9—C80.4 (3)
O1—C3—C7—C60.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i0.92 (3)1.85 (3)2.6558 (17)146 (3)
C5—H5A···O2ii0.932.483.345 (2)154
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC10H8O4
Mr192.16
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)7.0771 (2), 17.3485 (4), 6.9672 (2)
V3)855.41 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.39 × 0.11 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.956, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
9630, 1364, 1213
Rint0.035
(sin θ/λ)max1)0.709
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.07
No. of reflections1364
No. of parameters132
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i0.92 (3)1.85 (3)2.6558 (17)146 (3)
C5—H5A···O2ii0.93002.48003.345 (2)154.00
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+2, y+1, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). HKB and WSL are grateful for the award of USM fellowships for financial assistance.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCassady, J. M., Ojima, N., Chang, C. & McLaughlin, J. L. (1979). J. Nat. Prod. 42, 274–278.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDing, Z. Q., Dai, Y., Hao, H. P., Pan, R., Yao, X. J. & Wang, Z. T. (2008). Pharm. Biol. 46, 854–860.  Web of Science CrossRef Google Scholar
First citationGoy, P. A., Signer, H., Reist, R., Aichholz, R., Blum, W., Schmidt, E. & Kessmann, H. (1993). Planta, 191, 200–206.  CrossRef Google Scholar
First citationSamoylenko, V., Zhao, J. P., Dunbar, D. C., Khan, I. A., Rushing, J. W. & Muhammad, I. (2006). J. Agric. Food Chem. 54, 6398–6402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShaw, C. Y., Chen, C. H., Hsu, C. C., Chen, C. C. & Tsai, Y. C. (2003). Phytother. Res. 17, 823–825.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, W. P. K., Deraniyagala, S. A., Wijesundera, R. L. C., Karunanayake, E. H. & Priyanka, U. M. S. (2001). Mycopathologia, 153, 199–202.  Web of Science CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M. Y., West, B. J., Jensen, C. J., Nowicki, D., Chen, S., Palu, A. K. & Anderson, G. (2002). Acta Pharmacol. Sin. 12, 1127–1141.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds