supplementary materials


bx2290 scheme

Acta Cryst. (2010). E66, m1046    [ doi:10.1107/S1600536810029995 ]

Furfurylammonium chloridozincophosphate

K. Kaabi, M. El Glaoui, E. Jeanneau, F. Lefebvre and C. Ben Nasr

Abstract top

In the title compound, [ZnCl(HPO4)](C5H8NO), polymeric inorganic layers constructed from ZnO3Cl and PO4 tetrahedra are linked by O atoms: O-H...O hydrogen bonds occur within the layers. The organic cations occupy the interlayer regions and interact with the layers by way of N-H...O, N-H...Cl, and C-H...Cl hydrogen bonds.

Comment top

Recently, zincophosphates with monomeric phases, chains, layers and three-dimensional open framework have been prepared in the presence of different amines, alkali metal cations or metal complexes as structure directing agent (Gier and Stucky, 1991; Harrison and Phillips, 1997). We report here the crystal structure of one such compound, Zn(HPO4)ClC5H5ONH3 (I), (Fig. 1). The atomic arrangement of the title compound consists of corrugated anionic layers of formula [Zn(HPO4)Cl]nn- parallel to (b, c) plane. Charge neutrality is achieved by, the presence of protonated furfurylamine templete cation trapped in the inter-layer spacing (Fig. 2). Both zinc and phosphorus atoms are tetrahedrally coordinated. The zinc atom is connected by three phosphate groups and has one terminal Zn—Cl vertex. On the other hand, each phosphorus atom is bonded to three Zn atoms through three oxygen atoms with the forth coordination site being a terminal P—OH group. The topology of the zincophosphate connectivity pattern is shown in Fig. 3.

The ZnO3Cl and PO4 groups in Zn(HPO4)ClC5H5ONH3 fuse together via Zn—O—P bridges lead to a two-dimensional network. The resulting infinite anionic layers parallel to (b, c) plane are situated at x = 0. These layers are arranged in such away as to create two kinds of pores. The first one, built up from four-membered [Zn2P2] rings (presents an approximate dimensions 4.426 × 3.911 Å) and the second one formed by eight-membered [Zn4P4] rings (exhibits as approximate dimensions 9.571 × 3.376 Å)) This inorganic framework, with a 4.82 topology, is closely similar to that of Zn(HPO4)ClC5H12N [24]. However, these second pores are not completely accessible due to the presence of P—OH groups extending into them, thereby blocking the entry to pores (Fig. 2). In the [Zn(HPO4)Cl]nn- layers, the bond-length values (Zn—O (mean= 1.947 (2) Å, Zn—Cl = 2.216 (1) Å and P—O(mean) = 1.531 (2) Å) are close to those observed in other zincophosphate containing similar polyhedron Zn(HPO4)ClC5H12N (Rayes et al., 2001) and Zn(HPO4)ClC4H10NO (Kefi et al., 2007). Among the four distinct oxygen of the PO3OH) unit, three are bonded with Zn atoms, while the other has a significantly longer bond length (P—O = 1.570 (2) Å) suggesting that oxygen O(1) is an hydroxyl group atom. Hydrogen bonds plays an important role in stabilizing the Zn(HPO4)ClC5H5ONH3 structure. Furfurylaminium cations interact with zincophosphate layers through N—H···O and N—H···Cl hydrogen bonds. Inside layers, the P—O—H groups are interconnected via O—H···O hydrogen bonds (Fig. 3).

Related literature top

For related chloridozincophosphate materials, see: Gier & Stucky (1991); Harrison & Phillips (1997). For a discussion of Zn—O and P—O distances, see: Rayes et al. (2001); Kefi et al. (2007). For the Chebychev weighting scheme, see: Prince (1982); Watkin (1994).

Experimental top

The title compound Zn(HPO4)ClC5H5ONH3 was prepared at room temperature by adding 5.8 g (50 mmol) of orthophosphoric acid (85 weight % from Fluka) to a solution of 4.8 g of furfurylamine (50 mmol)(Acros) in 60 ml of water. To this mixture, we added, drop by drop, an aqueous solution of 6.8 g (50 mmol) of zinc chloride (Prolabo) under continuous stirring. A white precipitate was formed which completely dissolved by adding phosphoric acid. The obtained solution was slowly evaporated at room temperature until the formation of needle colorless crystals of the title compound (yield 53%).

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. View of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. For the disordered perchlorate anions, only major parts are shown. Dashed lines denote hydrogen bonds. [Symmetry codes: (b) -x, -y, 1-z; (d) x, 1/2-y, 1/2+z]
[Figure 2] Fig. 2. Polyhedral representation of the framework Zn(HPO4)ClC5H5ONH3, viewed the a direction.
[Figure 3] Fig. 3. Projection of Zn(HPO4)ClC5H5ONH3 structure in the plane (a, c). The hydrogen bonds are denoted by dotted lines.
Furfurylammonium chloridozincophosphate top
Crystal data top
[ZnCl(HPO4)](C5H8NO)F(000) = 592
Mr = 294.94Dx = 1.924 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6031 reflections
a = 12.7588 (4) Åθ = 2.5–29.1°
b = 9.6339 (2) ŵ = 2.83 mm1
c = 8.6281 (2) ÅT = 293 K
β = 106.233 (3)°Needle, colorless
V = 1018.26 (5) Å30.36 × 0.15 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Nova
diffractometer
1997 reflections with I > 2.0σ(I)
Radiation source: Mova (Mo) X-ray SourceRint = 0.024
mirrorθmax = 29.2°, θmin = 3.2°
ω scansh = 1717
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1211
Tmin = 0.488, Tmax = 0.806l = 1111
7978 measured reflections2 standard reflections every 400 reflections
2409 independent reflections intensity decay: 4%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.105E + 04 0.146E + 04 711. 140. -26.6
wR(F2) = 0.042(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.54 e Å3
2409 reflectionsΔρmin = 0.55 e Å3
127 parametersExtinction correction: Larson (1970), Equation 22
0 restraintsExtinction coefficient: 0.000
Primary atom site location: structure-invariant direct methods
Crystal data top
[ZnCl(HPO4)](C5H8NO)V = 1018.26 (5) Å3
Mr = 294.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7588 (4) ŵ = 2.83 mm1
b = 9.6339 (2) ÅT = 293 K
c = 8.6281 (2) Å0.36 × 0.15 × 0.08 mm
β = 106.233 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos Nova
diffractometer
1997 reflections with I > 2.0σ(I)
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Rint = 0.024
Tmin = 0.488, Tmax = 0.806θmax = 29.2°
7978 measured reflections2 standard reflections every 400 reflections
2409 independent reflections intensity decay: 4%
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.042Δρmax = 0.54 e Å3
S = 1.01Δρmin = 0.55 e Å3
2409 reflectionsAbsolute structure: ?
127 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.52 (release 06-11-2009 CrysAlis171 .NET) (compiled Nov 6 2009,16:24:50) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105 107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.09697 (2)0.06480 (3)0.74519 (3)0.0229
Cl10.26982 (6)0.09461 (9)0.88474 (10)0.0500
O10.07464 (14)0.17891 (18)0.5532 (2)0.0311
P10.02439 (5)0.22912 (6)0.42328 (7)0.0209
O20.05740 (16)0.12965 (16)0.28087 (19)0.0333
O30.00551 (14)0.37260 (16)0.36327 (19)0.0258
O40.12558 (14)0.23883 (19)0.4926 (2)0.0307
O50.4270 (2)0.5428 (4)0.7914 (3)0.0841
C10.3492 (2)0.5791 (3)0.8597 (3)0.0405
C20.3614 (3)0.7099 (4)0.9043 (5)0.0698
C30.4544 (4)0.7592 (6)0.8687 (6)0.0941
C40.4910 (4)0.6607 (7)0.8001 (5)0.0998
C50.2697 (3)0.4722 (3)0.8692 (4)0.0518
N10.19146 (18)0.4419 (3)0.7080 (3)0.0436
H10.10480.27460.57920.0473*
H20.22820.44350.63040.0669*
H30.13760.50710.68660.0666*
H40.16240.35750.70930.0668*
H50.31840.75760.95030.0857*
H60.48340.84690.89010.1143*
H70.55000.66380.75910.1243*
H80.23090.49760.94580.0636*
H90.30960.38790.90340.0635*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03217 (15)0.01510 (12)0.02197 (13)0.00057 (12)0.00852 (11)0.00072 (11)
Cl10.0318 (4)0.0606 (5)0.0526 (4)0.0051 (4)0.0034 (3)0.0016 (4)
O10.0349 (10)0.0312 (10)0.0282 (9)0.0045 (8)0.0107 (8)0.0126 (8)
P10.0343 (3)0.0148 (3)0.0160 (3)0.0006 (2)0.0111 (2)0.0004 (2)
O20.0672 (14)0.0159 (8)0.0209 (8)0.0060 (8)0.0189 (9)0.0030 (7)
O30.0410 (10)0.0161 (8)0.0234 (8)0.0004 (7)0.0143 (7)0.0020 (6)
O40.0341 (10)0.0373 (10)0.0239 (8)0.0036 (8)0.0135 (8)0.0039 (8)
O50.0689 (19)0.109 (2)0.086 (2)0.0059 (18)0.0394 (16)0.0313 (19)
N10.0384 (13)0.0287 (12)0.0622 (16)0.0040 (11)0.0115 (12)0.0030 (12)
C10.0363 (15)0.0487 (18)0.0349 (14)0.0017 (14)0.0073 (12)0.0030 (14)
C20.063 (2)0.051 (2)0.101 (3)0.0071 (19)0.032 (2)0.020 (2)
C30.085 (4)0.090 (4)0.101 (4)0.047 (3)0.015 (3)0.004 (3)
C40.051 (3)0.183 (6)0.070 (3)0.042 (3)0.024 (2)0.007 (4)
C50.062 (2)0.0439 (19)0.0475 (18)0.0063 (16)0.0113 (16)0.0055 (15)
Geometric parameters (Å, °) top
Zn1—O3i1.9637 (16)C1—C21.315 (5)
Zn1—O2ii1.9368 (16)C5—N11.497 (4)
Zn1—Cl12.2161 (8)C5—H90.960
Zn1—O11.9416 (16)C5—H80.961
O1—P11.5150 (18)N1—H40.895
P1—O21.5218 (17)N1—H30.911
P1—O31.5187 (16)N1—H20.918
P1—O41.5699 (17)C2—C31.390 (5)
O4—H10.798C2—H50.889
O5—C11.336 (4)C3—C41.274 (7)
O5—C41.389 (6)C3—H60.920
C1—C51.463 (4)C4—H70.917
O3i—Zn1—O2ii99.65 (7)C1—C5—H9107.2
O3i—Zn1—Cl1112.59 (6)N1—C5—H9106.2
O2ii—Zn1—Cl1112.08 (6)C1—C5—H8110.9
O3i—Zn1—O1107.97 (7)N1—C5—H8110.6
O2ii—Zn1—O1118.51 (7)H9—C5—H8109.6
Cl1—Zn1—O1106.05 (6)C5—N1—H4109.6
Zn1—O1—P1134.84 (11)C5—N1—H3108.8
O1—P1—O2112.44 (11)H4—N1—H3109.7
O1—P1—O3111.34 (10)C5—N1—H2109.3
O2—P1—O3109.41 (9)H4—N1—H2108.8
O1—P1—O4109.99 (10)H3—N1—H2110.5
O2—P1—O4105.88 (10)C1—C2—C3107.6 (4)
O3—P1—O4107.53 (10)C1—C2—H5126.1
Zn1ii—O2—P1135.00 (10)C3—C2—H5126.4
Zn1iii—O3—P1130.43 (10)C2—C3—C4107.2 (4)
P1—O4—H1106.8C2—C3—H6126.1
C1—O5—C4105.1 (3)C4—C3—H6126.7
O5—C1—C5117.0 (3)O5—C4—C3110.4 (4)
O5—C1—C2109.8 (3)O5—C4—H7122.6
C5—C1—C2133.3 (3)C3—C4—H7127.1
C1—C5—N1112.2 (2)
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, −y, −z+1; (iii) x, −y+1/2, z−1/2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O2i0.801.912.709 (2)177
N1—H4···O10.892.283.051 (6)145
N1—H3···O3iv0.911.992.896 (6)172
N1—H2···Cl1iii0.922.353.234 (3)161
C5—H9···Cl10.962.873.640 (3)138
Symmetry codes: (i) x, −y+1/2, z+1/2; (iv) −x, −y+1, −z+1; (iii) x, −y+1/2, z−1/2.
Table 1
Selected geometric parameters (Å, °)
top
Zn1—O3i1.9637 (16)O5—C11.336 (4)
Zn1—O2ii1.9368 (16)O5—C41.389 (6)
Zn1—Cl12.2161 (8)C1—C51.463 (4)
Zn1—O11.9416 (16)C1—C21.315 (5)
O1—P11.5150 (18)C5—N11.497 (4)
P1—O21.5218 (17)C2—C31.390 (5)
P1—O31.5187 (16)C3—C41.274 (7)
P1—O41.5699 (17)
O3i—Zn1—O2ii99.65 (7)O3—P1—O4107.53 (10)
O3i—Zn1—Cl1112.59 (6)Zn1ii—O2—P1135.00 (10)
O2ii—Zn1—Cl1112.08 (6)Zn1iii—O3—P1130.43 (10)
O3i—Zn1—O1107.97 (7)C1—O5—C4105.1 (3)
O2ii—Zn1—O1118.51 (7)O5—C1—C5117.0 (3)
Cl1—Zn1—O1106.05 (6)O5—C1—C2109.8 (3)
Zn1—O1—P1134.84 (11)C5—C1—C2133.3 (3)
O1—P1—O2112.44 (11)C1—C5—N1112.2 (2)
O1—P1—O3111.34 (10)C1—C2—C3107.6 (4)
O2—P1—O3109.41 (9)C2—C3—C4107.2 (4)
O1—P1—O4109.99 (10)O5—C4—C3110.4 (4)
O2—P1—O4105.88 (10)
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, −y, −z+1; (iii) x, −y+1/2, z−1/2.
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O4—H1···O2i0.801.912.709 (2)177
N1—H4···O10.892.283.051 (6)145
N1—H3···O3iv0.911.992.896 (6)172
N1—H2···Cl1iii0.922.353.234 (3)161
C5—H9···Cl10.962.873.640 (3)138
Symmetry codes: (i) x, −y+1/2, z+1/2; (iv) −x, −y+1, −z+1; (iii) x, −y+1/2, z−1/2.
Acknowledgements top

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Gier, T. E. & Stucky, G. D. (1991). Nature (London), 349, 508–510.

Harrison, W. T. A. & Phillips, M. L. F. (1997). Chem. Mater. 9, 1837–1846.

Kefi, R., Rayes, A., Ben Nasr, C. & Rzaigui, M. (2007). Mater. Res. Bull. 42, 288–298.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.

Rayes, A., Ben Nasr, C. & Rzaigui, M. (2001). Mater. Res. Bull. 36, 2229–2239.

Watkin, D. (1994). Acta Cryst. A50, 411–437.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.