metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Furfuryl­ammonium chloridozincophosphate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, bUniverstié Lyon1, Centre de Diffractométrie Henri Longchambon, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France, and cLaboratoire de Chimie Organometallique de Surface (LCOMS), Ecole Superieure de Chimie Physique Electronique, 69622 Villeurbanne Cedex, France
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 7 July 2010; accepted 28 July 2010; online 31 July 2010)

In the title compound, [ZnCl(HPO4)](C5H8NO), polymeric inorganic layers constructed from ZnO3Cl and PO4 tetra­hedra are linked by O atoms: O—H⋯O hydrogen bonds occur within the layers. The organic cations occupy the interlayer regions and interact with the layers by way of N—H⋯O, N—H⋯Cl, and C—H⋯Cl hydrogen bonds.

Related literature

For related zincophosphate materials, see: Gier & Stucky (1991[Gier, T. E. & Stucky, G. D. (1991). Nature (London), 349, 508-510.]); Harrison & Phillips (1997[Harrison, W. T. A. & Phillips, M. L. F. (1997). Chem. Mater. 9, 1837-1846.]). For a discussion of Zn—O and P—O distances, see: Rayes et al. (2001[Rayes, A., Ben Nasr, C. & Rzaigui, M. (2001). Mater. Res. Bull. 36, 2229-2239.]); Kefi et al. (2007[Kefi, R., Rayes, A., Ben Nasr, C. & Rzaigui, M. (2007). Mater. Res. Bull. 42, 288-298.]). For the Chebychev weighting scheme, see: Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl(HPO4)](C5H8NO)

  • Mr = 294.94

  • Monoclinic, P 21 /c

  • a = 12.7588 (4) Å

  • b = 9.6339 (2) Å

  • c = 8.6281 (2) Å

  • β = 106.233 (3)°

  • V = 1018.26 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 293 K

  • 0.36 × 0.15 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Nova diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.488, Tmax = 0.806

  • 7978 measured reflections

  • 2409 independent reflections

  • 1997 reflections with I > 2.0σ(I)

  • Rint = 0.024

  • 2 standard reflections every 400 reflections intensity decay: 4%

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.042

  • S = 1.01

  • 2409 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O3i 1.9637 (16)
Zn1—O2ii 1.9368 (16)
Zn1—Cl1 2.2161 (8)
Zn1—O1 1.9416 (16)
P1—O1 1.5150 (18)
P1—O2 1.5218 (17)
P1—O3 1.5187 (16)
P1—O4 1.5699 (17)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O2i 0.80 1.91 2.709 (2) 177
N1—H4⋯O1 0.89 2.28 3.051 (6) 145
N1—H3⋯O3iv 0.91 1.99 2.896 (6) 172
N1—H2⋯Cl1iii 0.92 2.35 3.234 (3) 161
C5—H9⋯Cl1 0.96 2.87 3.640 (3) 138
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS .

Supporting information


Comment top

Recently, zincophosphates with monomeric phases, chains, layers and three-dimensional open framework have been prepared in the presence of different amines, alkali metal cations or metal complexes as structure directing agent (Gier and Stucky, 1991; Harrison and Phillips, 1997). We report here the crystal structure of one such compound, Zn(HPO4)ClC5H5ONH3 (I), (Fig. 1). The atomic arrangement of the title compound consists of corrugated anionic layers of formula [Zn(HPO4)Cl]nn- parallel to (b, c) plane. Charge neutrality is achieved by, the presence of protonated furfurylamine templete cation trapped in the inter-layer spacing (Fig. 2). Both zinc and phosphorus atoms are tetrahedrally coordinated. The zinc atom is connected by three phosphate groups and has one terminal Zn—Cl vertex. On the other hand, each phosphorus atom is bonded to three Zn atoms through three oxygen atoms with the forth coordination site being a terminal P—OH group. The topology of the zincophosphate connectivity pattern is shown in Fig. 3.

The ZnO3Cl and PO4 groups in Zn(HPO4)ClC5H5ONH3 fuse together via Zn—O—P bridges lead to a two-dimensional network. The resulting infinite anionic layers parallel to (b, c) plane are situated at x = 0. These layers are arranged in such away as to create two kinds of pores. The first one, built up from four-membered [Zn2P2] rings (presents an approximate dimensions 4.426 × 3.911 Å) and the second one formed by eight-membered [Zn4P4] rings (exhibits as approximate dimensions 9.571 × 3.376 Å)) This inorganic framework, with a 4.82 topology, is closely similar to that of Zn(HPO4)ClC5H12N [24]. However, these second pores are not completely accessible due to the presence of P—OH groups extending into them, thereby blocking the entry to pores (Fig. 2). In the [Zn(HPO4)Cl]nn- layers, the bond-length values (Zn—O (mean= 1.947 (2) Å, Zn—Cl = 2.216 (1) Å and P—O(mean) = 1.531 (2) Å) are close to those observed in other zincophosphate containing similar polyhedron Zn(HPO4)ClC5H12N (Rayes et al., 2001) and Zn(HPO4)ClC4H10NO (Kefi et al., 2007). Among the four distinct oxygen of the PO3OH) unit, three are bonded with Zn atoms, while the other has a significantly longer bond length (P—O = 1.570 (2) Å) suggesting that oxygen O(1) is an hydroxyl group atom. Hydrogen bonds plays an important role in stabilizing the Zn(HPO4)ClC5H5ONH3 structure. Furfurylaminium cations interact with zincophosphate layers through N—H···O and N—H···Cl hydrogen bonds. Inside layers, the P—O—H groups are interconnected via O—H···O hydrogen bonds (Fig. 3).

Related literature top

For related chloridozincophosphate materials, see: Gier & Stucky (1991); Harrison & Phillips (1997). For a discussion of Zn—O and P—O distances, see: Rayes et al. (2001); Kefi et al. (2007). For the Chebychev weighting scheme, see: Prince (1982); Watkin (1994).

Experimental top

The title compound Zn(HPO4)ClC5H5ONH3 was prepared at room temperature by adding 5.8 g (50 mmol) of orthophosphoric acid (85 weight % from Fluka) to a solution of 4.8 g of furfurylamine (50 mmol)(Acros) in 60 ml of water. To this mixture, we added, drop by drop, an aqueous solution of 6.8 g (50 mmol) of zinc chloride (Prolabo) under continuous stirring. A white precipitate was formed which completely dissolved by adding phosphoric acid. The obtained solution was slowly evaporated at room temperature until the formation of needle colorless crystals of the title compound (yield 53%).

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Structure description top

Recently, zincophosphates with monomeric phases, chains, layers and three-dimensional open framework have been prepared in the presence of different amines, alkali metal cations or metal complexes as structure directing agent (Gier and Stucky, 1991; Harrison and Phillips, 1997). We report here the crystal structure of one such compound, Zn(HPO4)ClC5H5ONH3 (I), (Fig. 1). The atomic arrangement of the title compound consists of corrugated anionic layers of formula [Zn(HPO4)Cl]nn- parallel to (b, c) plane. Charge neutrality is achieved by, the presence of protonated furfurylamine templete cation trapped in the inter-layer spacing (Fig. 2). Both zinc and phosphorus atoms are tetrahedrally coordinated. The zinc atom is connected by three phosphate groups and has one terminal Zn—Cl vertex. On the other hand, each phosphorus atom is bonded to three Zn atoms through three oxygen atoms with the forth coordination site being a terminal P—OH group. The topology of the zincophosphate connectivity pattern is shown in Fig. 3.

The ZnO3Cl and PO4 groups in Zn(HPO4)ClC5H5ONH3 fuse together via Zn—O—P bridges lead to a two-dimensional network. The resulting infinite anionic layers parallel to (b, c) plane are situated at x = 0. These layers are arranged in such away as to create two kinds of pores. The first one, built up from four-membered [Zn2P2] rings (presents an approximate dimensions 4.426 × 3.911 Å) and the second one formed by eight-membered [Zn4P4] rings (exhibits as approximate dimensions 9.571 × 3.376 Å)) This inorganic framework, with a 4.82 topology, is closely similar to that of Zn(HPO4)ClC5H12N [24]. However, these second pores are not completely accessible due to the presence of P—OH groups extending into them, thereby blocking the entry to pores (Fig. 2). In the [Zn(HPO4)Cl]nn- layers, the bond-length values (Zn—O (mean= 1.947 (2) Å, Zn—Cl = 2.216 (1) Å and P—O(mean) = 1.531 (2) Å) are close to those observed in other zincophosphate containing similar polyhedron Zn(HPO4)ClC5H12N (Rayes et al., 2001) and Zn(HPO4)ClC4H10NO (Kefi et al., 2007). Among the four distinct oxygen of the PO3OH) unit, three are bonded with Zn atoms, while the other has a significantly longer bond length (P—O = 1.570 (2) Å) suggesting that oxygen O(1) is an hydroxyl group atom. Hydrogen bonds plays an important role in stabilizing the Zn(HPO4)ClC5H5ONH3 structure. Furfurylaminium cations interact with zincophosphate layers through N—H···O and N—H···Cl hydrogen bonds. Inside layers, the P—O—H groups are interconnected via O—H···O hydrogen bonds (Fig. 3).

For related chloridozincophosphate materials, see: Gier & Stucky (1991); Harrison & Phillips (1997). For a discussion of Zn—O and P—O distances, see: Rayes et al. (2001); Kefi et al. (2007). For the Chebychev weighting scheme, see: Prince (1982); Watkin (1994).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. View of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. For the disordered perchlorate anions, only major parts are shown. Dashed lines denote hydrogen bonds. [Symmetry codes: (b) -x, -y, 1-z; (d) x, 1/2-y, 1/2+z]
[Figure 2] Fig. 2. Polyhedral representation of the framework Zn(HPO4)ClC5H5ONH3, viewed the a direction.
[Figure 3] Fig. 3. Projection of Zn(HPO4)ClC5H5ONH3 structure in the plane (a, c). The hydrogen bonds are denoted by dotted lines.
Furfurylammonium chloridozincophosphate top
Crystal data top
[ZnCl(HPO4)](C5H8NO)F(000) = 592
Mr = 294.94Dx = 1.924 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6031 reflections
a = 12.7588 (4) Åθ = 2.5–29.1°
b = 9.6339 (2) ŵ = 2.83 mm1
c = 8.6281 (2) ÅT = 293 K
β = 106.233 (3)°Needle, colorless
V = 1018.26 (5) Å30.36 × 0.15 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Nova
diffractometer
1997 reflections with I > 2.0σ(I)
Radiation source: Mova (Mo) X-ray SourceRint = 0.024
Mirror monochromatorθmax = 29.2°, θmin = 3.2°
ω scansh = 1717
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1211
Tmin = 0.488, Tmax = 0.806l = 1111
7978 measured reflections2 standard reflections every 400 reflections
2409 independent reflections intensity decay: 4%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.105E + 04 0.146E + 04 711. 140. -26.6
wR(F2) = 0.042(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.54 e Å3
2409 reflectionsΔρmin = 0.55 e Å3
127 parametersExtinction correction: Larson (1970), Equation 22
0 restraintsExtinction coefficient: 0.000
Primary atom site location: structure-invariant direct methods
Crystal data top
[ZnCl(HPO4)](C5H8NO)V = 1018.26 (5) Å3
Mr = 294.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7588 (4) ŵ = 2.83 mm1
b = 9.6339 (2) ÅT = 293 K
c = 8.6281 (2) Å0.36 × 0.15 × 0.08 mm
β = 106.233 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos Nova
diffractometer
1997 reflections with I > 2.0σ(I)
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Rint = 0.024
Tmin = 0.488, Tmax = 0.8062 standard reflections every 400 reflections
7978 measured reflections intensity decay: 4%
2409 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.042H-atom parameters constrained
S = 1.01Δρmax = 0.54 e Å3
2409 reflectionsΔρmin = 0.55 e Å3
127 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.52 (release 06-11-2009 CrysAlis171 .NET) (compiled Nov 6 2009,16:24:50) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105 107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.09697 (2)0.06480 (3)0.74519 (3)0.0229
Cl10.26982 (6)0.09461 (9)0.88474 (10)0.0500
O10.07464 (14)0.17891 (18)0.5532 (2)0.0311
P10.02439 (5)0.22912 (6)0.42328 (7)0.0209
O20.05740 (16)0.12965 (16)0.28087 (19)0.0333
O30.00551 (14)0.37260 (16)0.36327 (19)0.0258
O40.12558 (14)0.23883 (19)0.4926 (2)0.0307
O50.4270 (2)0.5428 (4)0.7914 (3)0.0841
C10.3492 (2)0.5791 (3)0.8597 (3)0.0405
C20.3614 (3)0.7099 (4)0.9043 (5)0.0698
C30.4544 (4)0.7592 (6)0.8687 (6)0.0941
C40.4910 (4)0.6607 (7)0.8001 (5)0.0998
C50.2697 (3)0.4722 (3)0.8692 (4)0.0518
N10.19146 (18)0.4419 (3)0.7080 (3)0.0436
H10.10480.27460.57920.0473*
H20.22820.44350.63040.0669*
H30.13760.50710.68660.0666*
H40.16240.35750.70930.0668*
H50.31840.75760.95030.0857*
H60.48340.84690.89010.1143*
H70.55000.66380.75910.1243*
H80.23090.49760.94580.0636*
H90.30960.38790.90340.0635*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03217 (15)0.01510 (12)0.02197 (13)0.00057 (12)0.00852 (11)0.00072 (11)
Cl10.0318 (4)0.0606 (5)0.0526 (4)0.0051 (4)0.0034 (3)0.0016 (4)
O10.0349 (10)0.0312 (10)0.0282 (9)0.0045 (8)0.0107 (8)0.0126 (8)
P10.0343 (3)0.0148 (3)0.0160 (3)0.0006 (2)0.0111 (2)0.0004 (2)
O20.0672 (14)0.0159 (8)0.0209 (8)0.0060 (8)0.0189 (9)0.0030 (7)
O30.0410 (10)0.0161 (8)0.0234 (8)0.0004 (7)0.0143 (7)0.0020 (6)
O40.0341 (10)0.0373 (10)0.0239 (8)0.0036 (8)0.0135 (8)0.0039 (8)
O50.0689 (19)0.109 (2)0.086 (2)0.0059 (18)0.0394 (16)0.0313 (19)
N10.0384 (13)0.0287 (12)0.0622 (16)0.0040 (11)0.0115 (12)0.0030 (12)
C10.0363 (15)0.0487 (18)0.0349 (14)0.0017 (14)0.0073 (12)0.0030 (14)
C20.063 (2)0.051 (2)0.101 (3)0.0071 (19)0.032 (2)0.020 (2)
C30.085 (4)0.090 (4)0.101 (4)0.047 (3)0.015 (3)0.004 (3)
C40.051 (3)0.183 (6)0.070 (3)0.042 (3)0.024 (2)0.007 (4)
C50.062 (2)0.0439 (19)0.0475 (18)0.0063 (16)0.0113 (16)0.0055 (15)
Geometric parameters (Å, º) top
Zn1—O3i1.9637 (16)C1—C21.315 (5)
Zn1—O2ii1.9368 (16)C5—N11.497 (4)
Zn1—Cl12.2161 (8)C5—H90.960
Zn1—O11.9416 (16)C5—H80.961
O1—P11.5150 (18)N1—H40.895
P1—O21.5218 (17)N1—H30.911
P1—O31.5187 (16)N1—H20.918
P1—O41.5699 (17)C2—C31.390 (5)
O4—H10.798C2—H50.889
O5—C11.336 (4)C3—C41.274 (7)
O5—C41.389 (6)C3—H60.920
C1—C51.463 (4)C4—H70.917
O3i—Zn1—O2ii99.65 (7)C1—C5—H9107.2
O3i—Zn1—Cl1112.59 (6)N1—C5—H9106.2
O2ii—Zn1—Cl1112.08 (6)C1—C5—H8110.9
O3i—Zn1—O1107.97 (7)N1—C5—H8110.6
O2ii—Zn1—O1118.51 (7)H9—C5—H8109.6
Cl1—Zn1—O1106.05 (6)C5—N1—H4109.6
Zn1—O1—P1134.84 (11)C5—N1—H3108.8
O1—P1—O2112.44 (11)H4—N1—H3109.7
O1—P1—O3111.34 (10)C5—N1—H2109.3
O2—P1—O3109.41 (9)H4—N1—H2108.8
O1—P1—O4109.99 (10)H3—N1—H2110.5
O2—P1—O4105.88 (10)C1—C2—C3107.6 (4)
O3—P1—O4107.53 (10)C1—C2—H5126.1
Zn1ii—O2—P1135.00 (10)C3—C2—H5126.4
Zn1iii—O3—P1130.43 (10)C2—C3—C4107.2 (4)
P1—O4—H1106.8C2—C3—H6126.1
C1—O5—C4105.1 (3)C4—C3—H6126.7
O5—C1—C5117.0 (3)O5—C4—C3110.4 (4)
O5—C1—C2109.8 (3)O5—C4—H7122.6
C5—C1—C2133.3 (3)C3—C4—H7127.1
C1—C5—N1112.2 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O2i0.801.912.709 (2)177
N1—H4···O10.892.283.051 (6)145
N1—H3···O3iv0.911.992.896 (6)172
N1—H2···Cl1iii0.922.353.234 (3)161
C5—H9···Cl10.962.873.640 (3)138
Symmetry codes: (i) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[ZnCl(HPO4)](C5H8NO)
Mr294.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.7588 (4), 9.6339 (2), 8.6281 (2)
β (°) 106.233 (3)
V3)1018.26 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.83
Crystal size (mm)0.36 × 0.15 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Nova
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.488, 0.806
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
7978, 2409, 1997
Rint0.024
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.042, 1.01
No. of reflections2409
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.55

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR97 (Altomare et al., 1999), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Selected geometric parameters (Å, º) top
Zn1—O3i1.9637 (16)O5—C11.336 (4)
Zn1—O2ii1.9368 (16)O5—C41.389 (6)
Zn1—Cl12.2161 (8)C1—C51.463 (4)
Zn1—O11.9416 (16)C1—C21.315 (5)
O1—P11.5150 (18)C5—N11.497 (4)
P1—O21.5218 (17)C2—C31.390 (5)
P1—O31.5187 (16)C3—C41.274 (7)
P1—O41.5699 (17)
O3i—Zn1—O2ii99.65 (7)O3—P1—O4107.53 (10)
O3i—Zn1—Cl1112.59 (6)Zn1ii—O2—P1135.00 (10)
O2ii—Zn1—Cl1112.08 (6)Zn1iii—O3—P1130.43 (10)
O3i—Zn1—O1107.97 (7)C1—O5—C4105.1 (3)
O2ii—Zn1—O1118.51 (7)O5—C1—C5117.0 (3)
Cl1—Zn1—O1106.05 (6)O5—C1—C2109.8 (3)
Zn1—O1—P1134.84 (11)C5—C1—C2133.3 (3)
O1—P1—O2112.44 (11)C1—C5—N1112.2 (2)
O1—P1—O3111.34 (10)C1—C2—C3107.6 (4)
O2—P1—O3109.41 (9)C2—C3—C4107.2 (4)
O1—P1—O4109.99 (10)O5—C4—C3110.4 (4)
O2—P1—O4105.88 (10)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O2i0.801.912.709 (2)177
N1—H4···O10.892.283.051 (6)145
N1—H3···O3iv0.911.992.896 (6)172
N1—H2···Cl1iii0.922.353.234 (3)161
C5—H9···Cl10.962.873.640 (3)138
Symmetry codes: (i) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y+1, z+1.
 

Acknowledgements

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGier, T. E. & Stucky, G. D. (1991). Nature (London), 349, 508–510.  CrossRef CAS Web of Science Google Scholar
First citationHarrison, W. T. A. & Phillips, M. L. F. (1997). Chem. Mater. 9, 1837–1846.  CSD CrossRef CAS Web of Science Google Scholar
First citationKefi, R., Rayes, A., Ben Nasr, C. & Rzaigui, M. (2007). Mater. Res. Bull. 42, 288–298.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationRayes, A., Ben Nasr, C. & Rzaigui, M. (2001). Mater. Res. Bull. 36, 2229–2239.  Web of Science CSD CrossRef CAS Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds