organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Allyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine monohydrate

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bCNRST Division UATRS, Angle Allal Fassi/FAR, BP 8027 Hay Riad, Rabat, Morocco, cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 23 June 2010; accepted 26 June 2010; online 3 July 2010)

In the mol­ecule of the title compound, C15H12BrN3·H2O, the phenyl ring is coplanar with the imidazopyridine ring system [dihedral angle = 0.4 (1)°]. The water mol­ecule is disordered over two positions with occupancies of 0.58 (1) and 0.42 (1), and it is linked to the main mol­ecule via an O—H⋯N hydrogen bond.

Related literature

For a related structure, see: Ouzidan et al. (2010[Ouzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o946.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12BrN3·H2O

  • Mr = 332.20

  • Triclinic, [P \overline 1]

  • a = 7.4363 (1) Å

  • b = 9.4238 (1) Å

  • c = 11.0829 (2) Å

  • α = 68.076 (1)°

  • β = 74.637 (1)°

  • γ = 79.736 (1)°

  • V = 692.02 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.97 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker X8 APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.588, Tmax = 0.664

  • 14314 measured reflections

  • 3158 independent reflections

  • 2791 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.078

  • S = 0.98

  • 3158 reflections

  • 203 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯N3 0.83 (1) 2.14 (3) 2.887 (4) 149 (5)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA..]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA..]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The imidazo[4,5-b]pyridine unit is an important heterocyclic nucleus found in a large number of molecules in medicinal chemistry. Heterocycles derived from such compounds posess useful medicinal properties. Owing to their importance, strategies have been developed for their synthesis. The most popular synthetic approach involves the cyclocondensation of 2,3-pyridinediamine with carboxylic acid derivatives or on condensation with aldehydes. An earlier study reported the crystal structure of 4-benzyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine (Ouzidan et al., 2010), which was synthesized by using a much more convenient route. The synthesis is extended to the title compound (Scheme I and Fig. 1).

The imidazopyridine ring system is coplanar with the phenyl ring at the 2-position of the five-membered ring [dihedral angle = 0.4 (1) °].

Related literature top

For a related structure, see: Ouzidan et al. (2010).

Experimental top

To a solution 6-bromo-2-phenyl-1H-imidazo[4,5-b]pyridine (0.3 g, 1.09 mmol), was added a DMF (15 ml) solution of potassium carbonate (0.2 g, 1.42 mmol), tetra-n-butylammonium bromide (0.04 g, 0.1 mmol) and allyl bromide (0.11 ml, 1.31 mmol). Stirring was continued at room temperature for 12 h. The mixture was filtered and the solvent removed under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate-hexane (2:3) as eluent. Yellow crystals were isolated when the solvent was allowed to evaporate.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The water molecule is disordered over two positions in a 58 (1):42 (1) ratio. The H atoms were located in a difference Fourier map and were refined with distance restraints of O–H = 0.84 (1) Å and H···H 1.37 (1) Å; their Uiso values were tied to those of the oxygen atoms by a factor of 1.5.

Structure description top

The imidazo[4,5-b]pyridine unit is an important heterocyclic nucleus found in a large number of molecules in medicinal chemistry. Heterocycles derived from such compounds posess useful medicinal properties. Owing to their importance, strategies have been developed for their synthesis. The most popular synthetic approach involves the cyclocondensation of 2,3-pyridinediamine with carboxylic acid derivatives or on condensation with aldehydes. An earlier study reported the crystal structure of 4-benzyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine (Ouzidan et al., 2010), which was synthesized by using a much more convenient route. The synthesis is extended to the title compound (Scheme I and Fig. 1).

The imidazopyridine ring system is coplanar with the phenyl ring at the 2-position of the five-membered ring [dihedral angle = 0.4 (1) °].

For a related structure, see: Ouzidan et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the molecule of C15H12BrN3.H2O at the 50% probability level. H atoms are shown as spheres of arbitrary radii. The disorder in the water molecule is shown.
4-Allyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine monohydrate top
Crystal data top
C15H12BrN3·H2OZ = 2
Mr = 332.20F(000) = 336
Triclinic, P1Dx = 1.594 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4363 (1) ÅCell parameters from 7204 reflections
b = 9.4238 (1) Åθ = 2.3–27.2°
c = 11.0829 (2) ŵ = 2.97 mm1
α = 68.076 (1)°T = 293 K
β = 74.637 (1)°Prism, yellow
γ = 79.736 (1)°0.20 × 0.20 × 0.15 mm
V = 692.02 (2) Å3
Data collection top
Bruker X8 APEXII area-detector
diffractometer
3158 independent reflections
Radiation source: fine-focus sealed tube2791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.588, Tmax = 0.664k = 1212
14314 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.1091P]
where P = (Fo2 + 2Fc2)/3
3158 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.25 e Å3
6 restraintsΔρmin = 0.39 e Å3
Crystal data top
C15H12BrN3·H2Oγ = 79.736 (1)°
Mr = 332.20V = 692.02 (2) Å3
Triclinic, P1Z = 2
a = 7.4363 (1) ÅMo Kα radiation
b = 9.4238 (1) ŵ = 2.97 mm1
c = 11.0829 (2) ÅT = 293 K
α = 68.076 (1)°0.20 × 0.20 × 0.15 mm
β = 74.637 (1)°
Data collection top
Bruker X8 APEXII area-detector
diffractometer
3158 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2791 reflections with I > 2σ(I)
Tmin = 0.588, Tmax = 0.664Rint = 0.029
14314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0276 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.25 e Å3
3158 reflectionsΔρmin = 0.39 e Å3
203 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.78351 (3)0.73753 (2)0.425170 (19)0.05007 (9)
O11.1389 (9)0.1942 (6)0.8855 (4)0.0635 (16)0.582 (14)
H111.028 (3)0.229 (7)0.903 (7)0.095*0.582 (14)
H121.208 (6)0.237 (6)0.908 (6)0.095*0.582 (14)
O1'1.0501 (14)0.1260 (12)0.8987 (6)0.081 (3)0.418 (14)
H131.089 (17)0.191 (10)0.917 (11)0.122*0.418 (14)
H141.001 (16)0.059 (9)0.969 (6)0.122*0.418 (14)
N10.61186 (19)0.78390 (15)0.79149 (15)0.0323 (3)
N20.66816 (19)0.61173 (15)1.00435 (15)0.0347 (3)
N30.82874 (19)0.41411 (16)0.93153 (16)0.0358 (3)
C10.6432 (2)0.80592 (19)0.66074 (18)0.0350 (3)
H10.59760.89770.60350.042*
C20.7415 (2)0.6947 (2)0.61055 (19)0.0368 (4)
C30.8123 (2)0.55420 (19)0.69201 (19)0.0371 (4)
H30.87800.47910.65760.044*
C40.7798 (2)0.53257 (18)0.82533 (18)0.0331 (3)
C50.6797 (2)0.65118 (18)0.87503 (17)0.0313 (3)
C60.5091 (2)0.90590 (19)0.84527 (19)0.0381 (4)
H6A0.42100.96720.79080.046*
H6B0.43860.85870.93520.046*
C70.6408 (3)1.0068 (2)0.8464 (2)0.0481 (5)
H70.73670.96070.89170.058*
C80.6310 (5)1.1541 (3)0.7888 (3)0.0711 (7)
H8A0.53681.20370.74270.085*
H8B0.71801.21050.79330.085*
C90.7604 (2)0.46733 (18)1.03315 (18)0.0339 (3)
C100.7799 (2)0.37743 (19)1.17031 (18)0.0354 (4)
C110.7034 (3)0.4364 (2)1.2724 (2)0.0422 (4)
H11A0.64070.53421.25350.051*
C120.7194 (3)0.3511 (3)1.4024 (2)0.0498 (5)
H12A0.66780.39191.46990.060*
C130.8118 (3)0.2058 (3)1.4313 (2)0.0522 (5)
H13A0.82190.14811.51840.063*
C140.8890 (3)0.1467 (2)1.3309 (2)0.0509 (5)
H14A0.95200.04901.35050.061*
C150.8741 (3)0.2306 (2)1.2012 (2)0.0436 (4)
H150.92690.18921.13420.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.06412 (15)0.05036 (14)0.03761 (13)0.00253 (9)0.01310 (9)0.01926 (9)
O10.076 (3)0.056 (2)0.068 (2)0.020 (2)0.0289 (19)0.0341 (17)
O1'0.091 (5)0.084 (5)0.074 (3)0.022 (4)0.021 (3)0.044 (3)
N10.0350 (7)0.0260 (6)0.0359 (8)0.0023 (5)0.0108 (6)0.0108 (5)
N20.0360 (7)0.0294 (7)0.0370 (8)0.0013 (5)0.0094 (6)0.0104 (6)
N30.0352 (7)0.0288 (7)0.0422 (8)0.0013 (5)0.0112 (6)0.0107 (6)
C10.0373 (8)0.0307 (8)0.0371 (9)0.0006 (6)0.0122 (7)0.0106 (7)
C20.0394 (8)0.0368 (9)0.0373 (9)0.0032 (7)0.0104 (7)0.0148 (7)
C30.0382 (8)0.0321 (8)0.0435 (10)0.0008 (6)0.0084 (7)0.0181 (7)
C40.0307 (7)0.0276 (7)0.0418 (9)0.0004 (6)0.0095 (7)0.0129 (7)
C50.0302 (7)0.0274 (7)0.0368 (9)0.0010 (6)0.0083 (6)0.0116 (6)
C60.0422 (9)0.0305 (8)0.0394 (9)0.0086 (7)0.0097 (7)0.0143 (7)
C70.0513 (11)0.0487 (11)0.0530 (12)0.0017 (8)0.0112 (9)0.0303 (9)
C80.101 (2)0.0508 (13)0.0645 (16)0.0212 (13)0.0088 (14)0.0227 (12)
C90.0293 (7)0.0299 (8)0.0402 (9)0.0027 (6)0.0087 (6)0.0085 (7)
C100.0318 (8)0.0307 (8)0.0407 (9)0.0048 (6)0.0107 (7)0.0058 (7)
C110.0443 (9)0.0376 (9)0.0419 (10)0.0011 (7)0.0118 (8)0.0101 (7)
C120.0521 (11)0.0543 (12)0.0419 (11)0.0061 (9)0.0123 (9)0.0132 (9)
C130.0524 (11)0.0521 (12)0.0427 (11)0.0107 (9)0.0178 (9)0.0021 (9)
C140.0495 (11)0.0370 (10)0.0561 (13)0.0005 (8)0.0199 (9)0.0006 (9)
C150.0432 (9)0.0348 (9)0.0482 (11)0.0000 (7)0.0120 (8)0.0093 (8)
Geometric parameters (Å, º) top
Br1—C21.8887 (19)C6—C71.487 (3)
O1—H110.834 (10)C6—H6A0.97
O1—H120.838 (10)C6—H6B0.97
O1—H130.43 (12)C7—C81.291 (3)
O1'—H110.97 (5)C7—H70.93
O1'—H130.836 (10)C8—H8A0.93
O1'—H140.838 (10)C8—H8B0.93
N1—C11.346 (2)C9—C101.470 (3)
N1—C51.354 (2)C10—C111.389 (3)
N1—C61.489 (2)C10—C151.396 (2)
N2—C51.322 (2)C11—C121.388 (3)
N2—C91.372 (2)C11—H11A0.93
N3—C91.344 (2)C12—C131.379 (3)
N3—C41.365 (2)C12—H12A0.93
C1—C21.375 (2)C13—C141.374 (3)
C1—H10.93C13—H13A0.93
C2—C31.398 (2)C14—C151.381 (3)
C3—C41.374 (3)C14—H14A0.93
C3—H30.93C15—H150.93
C4—C51.433 (2)
H11—O1—H12110.6 (18)H6A—C6—H6B108.0
H12—O1—H13101 (6)C8—C7—C6124.3 (2)
H11—O1'—H14114 (9)C8—C7—H7117.8
H13—O1'—H14110.2 (19)C6—C7—H7117.8
C1—N1—C5119.78 (14)C7—C8—H8A120.0
C1—N1—C6120.89 (14)C7—C8—H8B120.0
C5—N1—C6119.29 (14)H8A—C8—H8B120.0
C5—N2—C9101.46 (14)N3—C9—N2117.02 (16)
C9—N3—C4103.09 (13)N3—C9—C10122.81 (15)
N1—C1—C2120.95 (16)N2—C9—C10120.17 (16)
N1—C1—H1119.5C11—C10—C15118.49 (18)
C2—C1—H1119.5C11—C10—C9120.61 (16)
C1—C2—C3122.00 (17)C15—C10—C9120.90 (17)
C1—C2—Br1117.99 (14)C12—C11—C10120.79 (18)
C3—C2—Br1120.01 (13)C12—C11—H11A119.6
C4—C3—C2116.73 (15)C10—C11—H11A119.6
C4—C3—H3121.6C13—C12—C11120.0 (2)
C2—C3—H3121.6C13—C12—H12A120.0
N3—C4—C3132.84 (15)C11—C12—H12A120.0
N3—C4—C5106.85 (15)C14—C13—C12119.7 (2)
C3—C4—C5120.29 (15)C14—C13—H13A120.1
N2—C5—N1128.19 (15)C12—C13—H13A120.1
N2—C5—C4111.57 (14)C13—C14—C15120.79 (19)
N1—C5—C4120.24 (16)C13—C14—H14A119.6
C7—C6—N1110.95 (14)C15—C14—H14A119.6
C7—C6—H6A109.4C14—C15—C10120.2 (2)
N1—C6—H6A109.4C14—C15—H15119.9
C7—C6—H6B109.4C10—C15—H15119.9
N1—C6—H6B109.4
C5—N1—C1—C20.8 (2)C1—N1—C6—C791.40 (19)
C6—N1—C1—C2178.59 (16)C5—N1—C6—C786.45 (19)
N1—C1—C2—C30.4 (3)N1—C6—C7—C8124.1 (2)
N1—C1—C2—Br1178.60 (12)C4—N3—C9—N20.46 (19)
C1—C2—C3—C40.4 (3)C4—N3—C9—C10179.96 (15)
Br1—C2—C3—C4178.57 (12)C5—N2—C9—N30.11 (19)
C9—N3—C4—C3177.66 (18)C5—N2—C9—C10179.41 (14)
C9—N3—C4—C50.79 (17)N3—C9—C10—C11178.67 (16)
C2—C3—C4—N3178.94 (17)N2—C9—C10—C110.8 (2)
C2—C3—C4—C50.7 (2)N3—C9—C10—C150.8 (2)
C9—N2—C5—N1179.89 (16)N2—C9—C10—C15179.71 (15)
C9—N2—C5—C40.63 (17)C15—C10—C11—C120.3 (3)
C1—N1—C5—N2177.63 (16)C9—C10—C11—C12179.18 (17)
C6—N1—C5—N20.2 (3)C10—C11—C12—C130.1 (3)
C1—N1—C5—C41.8 (2)C11—C12—C13—C140.5 (3)
C6—N1—C5—C4179.69 (15)C12—C13—C14—C150.4 (3)
N3—C4—C5—N20.95 (19)C13—C14—C15—C100.0 (3)
C3—C4—C5—N2177.74 (14)C11—C10—C15—C140.4 (3)
N3—C4—C5—N1179.52 (14)C9—C10—C15—C14179.12 (16)
C3—C4—C5—N11.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···N30.83 (1)2.14 (3)2.887 (4)149 (5)
O1—H12···N2i0.84 (1)2.41 (2)3.229 (7)165 (5)
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H12BrN3·H2O
Mr332.20
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4363 (1), 9.4238 (1), 11.0829 (2)
α, β, γ (°)68.076 (1), 74.637 (1), 79.736 (1)
V3)692.02 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.97
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker X8 APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.588, 0.664
No. of measured, independent and
observed [I > 2σ(I)] reflections
14314, 3158, 2791
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.078, 0.98
No. of reflections3158
No. of parameters203
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.39

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···N30.83 (1)2.14 (3)2.887 (4)149 (5)
 

Acknowledgements

The authors thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA..  Google Scholar
First citationOuzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds