organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Hy­dr­oxy-7-meth­­oxy-2-methyl-4H-chromen-4-one from Dysoxylum macrocarpum (Meliaceae)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bDepartment of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 24 June 2010; accepted 26 June 2010; online 3 July 2010)

Both independent mol­ecules in the asymmetric unit of the title compound, C11H10O4, are almost planar (r.m.s. deviations = 0.011 and 0.033 Å). In both mol­ecules, the hy­droxy group is intra­molecularly hydrogen bonded to the ketonic O atom. The independent mol­ecules are stacked alternately along the a axis, with the centroids of their chromene ring separated by distances of 4.490 (1) and 3.621 (1) Å.

Related literature

For studies on other Dysoxylum species, see: Ismail et al. (2009[Ismail, I. F., Nagakura, Y., Hirasawa, Y., Hosoya, T., Mohd Lazim, M. I., Hj Lajis, N. & Morita, H. (2009). Tetrahedron Lett. 50, 4830-4832.]); Lakshmi et al. (2007[Lakshmi, V., Pandey, K., Kapil, A., Singh, N., Samant, M. & Dube, A. (2007). Phytomedicine, 14, 36-42.]); Mohamad et al. (1999[Mohamad, K., Martin, M. T., Litaudon, M. C., Gaspard, C., Sevenet, T. & Pais, M. (1999). Phytochemistry, 52, 1461-1468.]); Mohanakumara et al. (2010[Mohanakumara, P., Sreejayan, N., Priti, V., Ramesha, B. T., Ravikanth, G., Ganeshaiah, K. N., Vasudeva, R., Mohan, J., Santhoshkumar, T. R. & Shaanker, R. U. (2010). Fitoterapia, 81, 145-148.]); Senthil Nathan et al. (2008[Senthil Nathan, S., Hisham, A. & Jayakumar, G. (2008). Fitoterapia, 79, 106-111.]); Xie et al. (2008[Xie, J.-B., Yang, S.-P. & Yue, J.-M. (2008). Phytochemistry, 69, 2993-2997.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10O4

  • Mr = 206.19

  • Monoclinic, P 21 /c

  • a = 7.7393 (3) Å

  • b = 14.5373 (6) Å

  • c = 16.8263 (7) Å

  • β = 98.848 (1)°

  • V = 1870.57 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.35 × 0.35 × 0.02 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 17796 measured reflections

  • 4285 independent reflections

  • 3795 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.108

  • S = 1.02

  • 4285 reflections

  • 283 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.85 (1) 1.83 (1) 2.618 (1) 154 (2)
O7—H7⋯O6 0.85 (1) 1.79 (1) 2.595 (1) 156 (2)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Dysoxylum produces terpenes, terpenoids and other compounds, as noted in studies on Dysoxylum acutangulum, Dysoxylum beddomei, Dysoxylum binectariferum, Dysoxylum densiflorum, Dysoxylum malabaricum and Dysoxylum macranthum (Ismail et al., 2009; Lakshmi et al., 2007; Mohamad et al., 1999; Mohanakumara et al., 2010; Senthil Nathan et al., 2008; Xie et al., 2008). A coumarin (Scheme I) is isolated from Dysoxylum macrocarpum in the present study. There are two independent molecules (Fig. 1). Both independent molecules are planar [r.m.s. deviations 0.011 and 0.033 Å); one is stacked over the other [dihedral angle between the planes 4.5 (1) °] but the distance between them exceeds 3.5 Å. The hydroxy group is intramolecularly hydrogen bonded to the ketonic oxygen atom.

Related literature top

For studies on other Dysoxylum species, see: Ismail et al. (2009); Lakshmi et al. (2007); Mohamad et al. (1999); Mohanakumara et al. (2010); Senthil Nathan et al. (2008); Xie et al. (2008).

Experimental top

Dried ground leaves of Dysoxylum macrocarpum (1.4 kg) were soaked in hexane for three days. The solvent was removed and the plant material was dried; the dried plant material was extracted with dichloromethane for another three days. The dichloromethane was removed by evaporation to give a crude material (30 g) that was subjected to column chromatography over silica gel. Separation was effected with hexane-dichloromethane (1:0 to 0:1v/v); the polarity was increased with methanol. One fraction was eluted with hexane-methanol (92:8 v/v) to give a compound that was further purified by silica gel column chromatography with hexane-ethyl acetate (70:30 v/v) to yield colourless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Ueq(C). The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H = 0.84 (1) Å; their Uiso parameters were freely refined.

Structure description top

Dysoxylum produces terpenes, terpenoids and other compounds, as noted in studies on Dysoxylum acutangulum, Dysoxylum beddomei, Dysoxylum binectariferum, Dysoxylum densiflorum, Dysoxylum malabaricum and Dysoxylum macranthum (Ismail et al., 2009; Lakshmi et al., 2007; Mohamad et al., 1999; Mohanakumara et al., 2010; Senthil Nathan et al., 2008; Xie et al., 2008). A coumarin (Scheme I) is isolated from Dysoxylum macrocarpum in the present study. There are two independent molecules (Fig. 1). Both independent molecules are planar [r.m.s. deviations 0.011 and 0.033 Å); one is stacked over the other [dihedral angle between the planes 4.5 (1) °] but the distance between them exceeds 3.5 Å. The hydroxy group is intramolecularly hydrogen bonded to the ketonic oxygen atom.

For studies on other Dysoxylum species, see: Ismail et al. (2009); Lakshmi et al. (2007); Mohamad et al. (1999); Mohanakumara et al. (2010); Senthil Nathan et al. (2008); Xie et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of the two independent molecules of C11H10O4 at the 70% probability level. H atoms are drawn as spheres of arbitrary radii.
5-Hydroxy-7-methoxy-2-methyl-4H-chromen-4-one top
Crystal data top
C11H10O4F(000) = 864
Mr = 206.19Dx = 1.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9622 reflections
a = 7.7393 (3) Åθ = 2.5–28.3°
b = 14.5373 (6) ŵ = 0.11 mm1
c = 16.8263 (7) ÅT = 100 K
β = 98.848 (1)°Plate, colourless
V = 1870.57 (13) Å30.35 × 0.35 × 0.02 mm
Z = 8
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3795 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
ω scansh = 1010
17796 measured reflectionsk = 1818
4285 independent reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.4625P]
where P = (Fo2 + 2Fc2)/3
4285 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.34 e Å3
2 restraintsΔρmin = 0.28 e Å3
Crystal data top
C11H10O4V = 1870.57 (13) Å3
Mr = 206.19Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.7393 (3) ŵ = 0.11 mm1
b = 14.5373 (6) ÅT = 100 K
c = 16.8263 (7) Å0.35 × 0.35 × 0.02 mm
β = 98.848 (1)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3795 reflections with I > 2σ(I)
17796 measured reflectionsRint = 0.017
4285 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.34 e Å3
4285 reflectionsΔρmin = 0.28 e Å3
283 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49963 (9)0.31112 (5)0.80755 (4)0.01545 (16)
O20.54836 (10)0.03128 (5)0.81510 (5)0.02311 (18)
O30.66721 (11)0.03755 (5)0.67769 (5)0.02290 (18)
O40.71726 (10)0.32572 (5)0.55887 (4)0.01882 (17)
O51.05826 (9)0.38133 (5)0.70570 (4)0.01574 (16)
O61.12544 (10)0.10446 (5)0.73680 (5)0.02192 (17)
O71.00123 (11)0.11679 (5)0.87114 (5)0.02253 (18)
O80.82751 (10)0.40629 (5)0.95136 (4)0.01974 (17)
C10.39489 (14)0.32353 (7)0.93075 (6)0.0200 (2)
H1A0.35760.28640.97370.030*
H1B0.29640.36070.90490.030*
H1C0.49090.36410.95360.030*
C20.45527 (12)0.26180 (7)0.87004 (6)0.0163 (2)
C30.46768 (13)0.16950 (7)0.87405 (6)0.0184 (2)
H3A0.43290.13830.91860.022*
C40.53257 (12)0.11694 (7)0.81228 (6)0.0172 (2)
C50.58040 (12)0.17065 (6)0.74648 (6)0.0147 (2)
C60.64722 (12)0.12963 (7)0.68075 (6)0.0160 (2)
C70.69215 (12)0.18335 (7)0.61950 (6)0.0167 (2)
H7A0.73790.15590.57590.020*
C80.66943 (12)0.27902 (7)0.62233 (6)0.0148 (2)
C90.60437 (12)0.32217 (6)0.68517 (6)0.01419 (19)
H90.58950.38700.68640.017*
C100.56218 (12)0.26615 (6)0.74610 (5)0.01350 (19)
C110.69519 (14)0.42341 (7)0.55749 (6)0.0205 (2)
H11A0.72870.44830.50790.031*
H11B0.76930.45060.60410.031*
H11C0.57250.43830.55960.031*
C121.16596 (14)0.38672 (7)0.58240 (6)0.0200 (2)
H12A1.21530.34770.54400.030*
H12B1.25120.43400.60330.030*
H12C1.05900.41620.55530.030*
C131.12406 (12)0.32926 (7)0.65014 (6)0.0163 (2)
C141.14769 (13)0.23789 (7)0.65825 (6)0.0180 (2)
H141.19400.20470.61770.022*
C151.10416 (12)0.18917 (7)0.72722 (6)0.0164 (2)
C161.03515 (12)0.24579 (6)0.78581 (6)0.01414 (19)
C170.98490 (12)0.20810 (6)0.85677 (6)0.0159 (2)
C180.91807 (12)0.26380 (7)0.91094 (6)0.0167 (2)
H180.88580.23860.95860.020*
C190.89823 (12)0.35822 (7)0.89482 (6)0.0151 (2)
C200.94688 (12)0.39841 (6)0.82650 (6)0.01472 (19)
H200.93480.46260.81670.018*
C211.01372 (12)0.34029 (6)0.77342 (5)0.01377 (19)
C220.78973 (16)0.50156 (7)0.93552 (7)0.0250 (2)
H22A0.73440.52750.97910.038*
H22B0.71030.50770.88450.038*
H22C0.89860.53470.93210.038*
H30.634 (2)0.0179 (12)0.7204 (8)0.061 (6)*
H71.043 (3)0.0968 (13)0.8304 (9)0.070 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0181 (3)0.0157 (3)0.0134 (3)0.0013 (3)0.0054 (3)0.0001 (2)
O20.0254 (4)0.0153 (4)0.0293 (4)0.0011 (3)0.0063 (3)0.0063 (3)
O30.0307 (4)0.0125 (3)0.0266 (4)0.0021 (3)0.0078 (3)0.0015 (3)
O40.0253 (4)0.0179 (4)0.0146 (3)0.0024 (3)0.0074 (3)0.0023 (3)
O50.0205 (3)0.0151 (3)0.0125 (3)0.0002 (3)0.0055 (3)0.0011 (2)
O60.0276 (4)0.0138 (3)0.0246 (4)0.0010 (3)0.0045 (3)0.0030 (3)
O70.0336 (4)0.0123 (3)0.0226 (4)0.0006 (3)0.0071 (3)0.0036 (3)
O80.0259 (4)0.0179 (4)0.0174 (4)0.0017 (3)0.0094 (3)0.0009 (3)
C10.0191 (5)0.0263 (5)0.0152 (5)0.0007 (4)0.0048 (4)0.0019 (4)
C20.0131 (4)0.0229 (5)0.0129 (4)0.0009 (4)0.0020 (3)0.0014 (4)
C30.0175 (5)0.0222 (5)0.0157 (5)0.0006 (4)0.0033 (4)0.0049 (4)
C40.0141 (4)0.0171 (5)0.0198 (5)0.0005 (3)0.0007 (3)0.0032 (4)
C50.0135 (4)0.0146 (4)0.0157 (5)0.0000 (3)0.0013 (3)0.0006 (3)
C60.0154 (4)0.0139 (4)0.0180 (5)0.0009 (3)0.0003 (3)0.0022 (3)
C70.0176 (5)0.0173 (5)0.0151 (4)0.0018 (3)0.0024 (3)0.0034 (3)
C80.0144 (4)0.0182 (5)0.0117 (4)0.0005 (3)0.0014 (3)0.0012 (3)
C90.0152 (4)0.0126 (4)0.0146 (4)0.0004 (3)0.0016 (3)0.0008 (3)
C100.0127 (4)0.0152 (4)0.0127 (4)0.0008 (3)0.0020 (3)0.0014 (3)
C110.0251 (5)0.0175 (5)0.0200 (5)0.0011 (4)0.0064 (4)0.0051 (4)
C120.0216 (5)0.0232 (5)0.0162 (5)0.0034 (4)0.0059 (4)0.0006 (4)
C130.0143 (4)0.0209 (5)0.0136 (4)0.0031 (3)0.0023 (3)0.0024 (3)
C140.0178 (4)0.0206 (5)0.0164 (5)0.0015 (4)0.0050 (4)0.0049 (4)
C150.0144 (4)0.0157 (4)0.0186 (5)0.0011 (3)0.0007 (3)0.0030 (4)
C160.0140 (4)0.0137 (4)0.0143 (4)0.0010 (3)0.0010 (3)0.0002 (3)
C170.0165 (4)0.0137 (4)0.0170 (5)0.0016 (3)0.0008 (3)0.0021 (3)
C180.0175 (5)0.0178 (5)0.0151 (4)0.0023 (4)0.0029 (3)0.0032 (3)
C190.0142 (4)0.0175 (5)0.0139 (4)0.0007 (3)0.0030 (3)0.0022 (3)
C200.0164 (4)0.0126 (4)0.0152 (4)0.0000 (3)0.0025 (3)0.0004 (3)
C210.0135 (4)0.0156 (4)0.0120 (4)0.0020 (3)0.0014 (3)0.0018 (3)
C220.0343 (6)0.0178 (5)0.0250 (5)0.0052 (4)0.0110 (4)0.0019 (4)
Geometric parameters (Å, º) top
O1—C21.3596 (11)C7—H7A0.95
O1—C101.3729 (11)C8—C91.3888 (13)
O2—C41.2514 (12)C9—C101.3870 (13)
O3—C61.3494 (11)C9—H90.95
O3—H30.850 (9)C11—H11A0.98
O4—C81.3637 (11)C11—H11B0.98
O4—C111.4302 (12)C11—H11C0.98
O5—C131.3611 (11)C12—C131.4886 (13)
O5—C211.3761 (11)C12—H12A0.98
O6—C151.2496 (12)C12—H12B0.98
O7—C171.3517 (11)C12—H12C0.98
O7—H70.852 (9)C13—C141.3450 (14)
O8—C191.3612 (11)C14—C151.4430 (14)
O8—C221.4319 (12)C14—H140.95
C1—C21.4880 (13)C15—C161.4480 (13)
C1—H1A0.98C16—C211.3956 (13)
C1—H1B0.98C16—C171.4212 (13)
C1—H1C0.98C17—C181.3780 (14)
C2—C31.3463 (14)C18—C191.4030 (13)
C3—C41.4412 (14)C18—H180.95
C3—H3A0.95C19—C201.3920 (13)
C4—C51.4486 (13)C20—C211.3862 (13)
C5—C101.3955 (13)C20—H200.95
C5—C61.4220 (13)C22—H22A0.98
C6—C71.3795 (14)C22—H22B0.98
C7—C81.4035 (13)C22—H22C0.98
C2—O1—C10119.45 (8)O4—C11—H11C109.5
C6—O3—H3104.5 (13)H11A—C11—H11C109.5
C8—O4—C11117.45 (7)H11B—C11—H11C109.5
C13—O5—C21119.70 (8)C13—C12—H12A109.5
C17—O7—H7103.2 (14)C13—C12—H12B109.5
C19—O8—C22117.32 (8)H12A—C12—H12B109.5
C2—C1—H1A109.5C13—C12—H12C109.5
C2—C1—H1B109.5H12A—C12—H12C109.5
H1A—C1—H1B109.5H12B—C12—H12C109.5
C2—C1—H1C109.5C14—C13—O5122.61 (9)
H1A—C1—H1C109.5C14—C13—C12126.13 (9)
H1B—C1—H1C109.5O5—C13—C12111.25 (8)
C3—C2—O1122.67 (9)C13—C14—C15121.42 (9)
C3—C2—C1126.45 (9)C13—C14—H14119.3
O1—C2—C1110.87 (8)C15—C14—H14119.3
C2—C3—C4121.49 (9)O6—C15—C14123.03 (9)
C2—C3—H3A119.3O6—C15—C16121.83 (9)
C4—C3—H3A119.3C14—C15—C16115.14 (9)
O2—C4—C3122.89 (9)C21—C16—C17117.60 (8)
O2—C4—C5122.03 (9)C21—C16—C15120.37 (9)
C3—C4—C5115.08 (9)C17—C16—C15122.02 (9)
C10—C5—C6117.53 (8)O7—C17—C18119.54 (9)
C10—C5—C4120.14 (9)O7—C17—C16119.91 (9)
C6—C5—C4122.32 (9)C18—C17—C16120.55 (9)
O3—C6—C7119.31 (9)C17—C18—C19119.21 (9)
O3—C6—C5120.21 (9)C17—C18—H18120.4
C7—C6—C5120.48 (9)C19—C18—H18120.4
C6—C7—C8119.23 (9)O8—C19—C20123.40 (9)
C6—C7—H7A120.4O8—C19—C18114.27 (8)
C8—C7—H7A120.4C20—C19—C18122.33 (9)
O4—C8—C9123.04 (8)C21—C20—C19116.84 (8)
O4—C8—C7114.59 (8)C21—C20—H20121.6
C9—C8—C7122.37 (9)C19—C20—H20121.6
C10—C9—C8116.85 (8)O5—C21—C20115.79 (8)
C10—C9—H9121.6O5—C21—C16120.75 (8)
C8—C9—H9121.6C20—C21—C16123.46 (8)
O1—C10—C9115.31 (8)O8—C22—H22A109.5
O1—C10—C5121.16 (8)O8—C22—H22B109.5
C9—C10—C5123.53 (8)H22A—C22—H22B109.5
O4—C11—H11A109.5O8—C22—H22C109.5
O4—C11—H11B109.5H22A—C22—H22C109.5
H11A—C11—H11B109.5H22B—C22—H22C109.5
C10—O1—C2—C30.95 (13)C21—O5—C13—C140.18 (14)
C10—O1—C2—C1178.64 (7)C21—O5—C13—C12179.19 (7)
O1—C2—C3—C41.16 (15)O5—C13—C14—C150.03 (15)
C1—C2—C3—C4178.35 (9)C12—C13—C14—C15179.24 (9)
C2—C3—C4—O2178.74 (10)C13—C14—C15—O6179.58 (9)
C2—C3—C4—C50.66 (14)C13—C14—C15—C160.25 (14)
O2—C4—C5—C10179.40 (9)O6—C15—C16—C21179.72 (9)
C3—C4—C5—C100.00 (13)C14—C15—C16—C210.38 (13)
O2—C4—C5—C60.38 (15)O6—C15—C16—C171.11 (15)
C3—C4—C5—C6179.78 (8)C14—C15—C16—C17179.55 (8)
C10—C5—C6—O3179.79 (8)C21—C16—C17—O7179.27 (8)
C4—C5—C6—O30.42 (14)C15—C16—C17—O70.08 (14)
C10—C5—C6—C70.16 (14)C21—C16—C17—C180.18 (14)
C4—C5—C6—C7179.63 (8)C15—C16—C17—C18179.37 (8)
O3—C6—C7—C8179.29 (9)O7—C17—C18—C19178.73 (9)
C5—C6—C7—C80.66 (14)C16—C17—C18—C190.72 (14)
C11—O4—C8—C91.20 (13)C22—O8—C19—C205.00 (14)
C11—O4—C8—C7179.17 (8)C22—O8—C19—C18174.86 (9)
C6—C7—C8—O4179.82 (8)C17—C18—C19—O8178.59 (8)
C6—C7—C8—C90.55 (14)C17—C18—C19—C201.27 (14)
O4—C8—C9—C10179.53 (8)O8—C19—C20—C21178.65 (8)
C7—C8—C9—C100.08 (14)C18—C19—C20—C211.19 (14)
C2—O1—C10—C9179.84 (8)C13—O5—C21—C20179.66 (8)
C2—O1—C10—C50.26 (13)C13—O5—C21—C160.03 (13)
C8—C9—C10—O1179.48 (7)C19—C20—C21—O5178.99 (8)
C8—C9—C10—C50.61 (14)C19—C20—C21—C160.62 (14)
C6—C5—C10—O1179.60 (8)C17—C16—C21—O5179.46 (8)
C4—C5—C10—O10.19 (14)C15—C16—C21—O50.26 (14)
C6—C5—C10—C90.50 (14)C17—C16—C21—C200.13 (14)
C4—C5—C10—C9179.71 (9)C15—C16—C21—C20179.34 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.85 (1)1.83 (1)2.618 (1)154 (2)
O7—H7···O60.85 (1)1.79 (1)2.595 (1)156 (2)
C7—H7A···O8i0.952.483.4222 (12)173
C9—H9···O2ii0.952.353.2614 (12)160
C12—H12B···O2iii0.982.373.3326 (13)166
C18—H18···O4iv0.952.473.3904 (12)163
C20—H20···O6iii0.952.273.1995 (12)166
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+2, y+1/2, z+3/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H10O4
Mr206.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.7393 (3), 14.5373 (6), 16.8263 (7)
β (°) 98.848 (1)
V3)1870.57 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.35 × 0.02
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17796, 4285, 3795
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.108, 1.02
No. of reflections4285
No. of parameters283
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.85 (1)1.83 (1)2.618 (1)154 (2)
O7—H7···O60.85 (1)1.79 (1)2.595 (1)156 (2)
 

Acknowledgements

The authors thank the University of Malaya (PPP PS378/009B) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIsmail, I. F., Nagakura, Y., Hirasawa, Y., Hosoya, T., Mohd Lazim, M. I., Hj Lajis, N. & Morita, H. (2009). Tetrahedron Lett. 50, 4830–4832.  Web of Science CrossRef CAS Google Scholar
First citationLakshmi, V., Pandey, K., Kapil, A., Singh, N., Samant, M. & Dube, A. (2007). Phytomedicine, 14, 36–42.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMohamad, K., Martin, M. T., Litaudon, M. C., Gaspard, C., Sevenet, T. & Pais, M. (1999). Phytochemistry, 52, 1461–1468.  Web of Science CrossRef CAS Google Scholar
First citationMohanakumara, P., Sreejayan, N., Priti, V., Ramesha, B. T., Ravikanth, G., Ganeshaiah, K. N., Vasudeva, R., Mohan, J., Santhoshkumar, T. R. & Shaanker, R. U. (2010). Fitoterapia, 81, 145–148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSenthil Nathan, S., Hisham, A. & Jayakumar, G. (2008). Fitoterapia, 79, 106–111.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, J.-B., Yang, S.-P. & Yue, J.-M. (2008). Phytochemistry, 69, 2993–2997.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds